Date of this Version

June 1996

Document Type

Conference Paper

Publication Details

Finnie, G and Wittig, G, AI Tools for Software Development Effort Estimation, Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96). Copyright IEEE 1996
Published by the Institute of Electrical and Electronics Engineers (IEEE)
Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.


Software development involves a number of interrelated factors which affect development effort and productivity. Since many of these relationships are not well understood, accurate estimation of softare development time and effort is a dificult problem. Most estimation models in use or proposed in the literature are based on regression techniques. This paper examines the potential of two artificial intelligence approaches i.e. artificial neural network and case-based reasoning for creating development effort estimation models.

Artificial neural network can provide accurate estimates when there are complex relationships between variables and where the input data is distorted by high noise levels Case-based reasoning solves problems by adapting solutions from old problems similar to the current problem. This research examines both the performance of back-propagation artificial neural networks in estimating software development effort and the potential of case-based reasoning for development estimation using the same dataset.