Date of this Version


Document Type

Journal Article

Publication Details

Published Version

Rathbone, J., Hoffman, T., Glasziou, P. (2015). Faster title and abstract screening? Evaluating Abstrackr, a semi-automated online screening program for systematic reviewers. Systematic reviews. 4(80), 1-7.

Access the journal

© Copyright, The Authors, 2015

This article is licensed under a Creative Commons 4.0 license

2015 HERDC Submission

NHMRC Project Grant GNT05275




Background: Citation screening is time consuming and inefficient. We sought to evaluate the performance of Abstrackr, a semi-automated online tool for predictive title and abstract screening. Methods: Four systematic reviews (aHUS, dietary fibre, ECHO, rituximab) were used to evaluate Abstrackr. Citations from electronic searches of biomedical databases were imported into Abstrackr, and titles and abstracts were screened and included or excluded according to the entry criteria. This process was continued until Abstrackr predicted and classified the remaining unscreened citations as relevant or irrelevant. These classification predictions were checked for accuracy against the original review decisions. Sensitivity analyses were performed to assess the effects of including case reports in the aHUS dataset whilst screening and the effects of using larger imbalanced datasets with the ECHO dataset. The performance of Abstrackr was calculated according to the number of relevant studies missed, the workload saving, the false negative rate, and the precision of the algorithm to correctly predict relevant studies for inclusion, i.e. further full text inspection.



This document has been peer reviewed.


To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.