Date of this Version


Document Type

Journal Article

Publication Details

Published version

Keogh, J. W. L., Lake, J. P., & Swinton, P. A. (2013). Practical applications of biomechanical principles in resistance training: Moments and moment arms. Journal of Fitness Research, 2(2), 39-48.

Access the journal

Copyright © 2013, Australian Institute of Fitness

Articles published in Journal of Fitness Research are in an Open Access format and complies with the Budapest Open Access Initiative. Each issue is freely available on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself.




Exercise professionals routinely prescribe resistance training to clients with varied goals. Therefore, they need to be able to modify the difficulty of a variety of exercises and to understand how such modifications can alter the relative joint loading on their clients so to maximise the potential for positive adaptation and to minimise injury risk. This paper is the first in a three part series that will examine how a variety of biomechanical principles and concepts have direct relevance to the prescription of resistance training for the general and athletic populations as well as for musculoskeletal injury rehabilitation. In this paper, we start by defining the terms moment (torque), moment arms, compressive, tensile and shear forces as well as joint stress (pressure). We then demonstrate how an understanding of moments and moment arms is integral to the exercise professionals’ ability to develop a systematic progression of variations of common exercises. In particular, we examine how a variety of factors including joint range of motion, body orientation, type of external loading, the lifter’s anthropometric proportions and the position of the external load will influence the difficulty of each exercise variation. We then highlight the primary results of several selected studies which have compared the resistance moment arms and joint moments, forces or stresses that are encountered during selected variations of common lower body resistance training exercises. We hope that exercise professionals will benefit from this knowledge of applied resistance training biomechanics and be better able to systematically progress exercise difficulty and to modify joint loading as a result. The two remaining articles in this series will focus on the neuromechanical properties of the human musculoskeletal system and better understanding the biomechanical implications of a variety of alternative resistance training techniques, respectively.



This document has been peer reviewed.


To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.