Date of this Version


Document Type

Journal Article

Publication Details

Published version

Morrison, J., McLellan, C., & Minahan, C. (2015). A clustered repeated-sprint running protocol for team-sport athletes performed in normobaric hypoxia. Journal of Sports Science and Medicine, 14(4), 857-863.

Access the journal

© Copyright, Journal of sports science and medicine & The Authors, 2015

2015 HERDC Submission




The present study compared the performance (peak speed, distance, and acceleration) of ten amateur team-sport athletes during a clustered (i.e., multiple sets) repeated-sprint protocol, (4 sets of 4, 4-s running sprints; i.e., RSR444) in normobaric normoxia (FiO2 = 0.209; i.e., RSN) with normobaric hypoxia (FiO2 = 0.140; i.e., RSH). Subjects completed two separate trials (i. RSN, ii. RSH; randomised order) between 48 h and 72 h apart on a non-motorized treadmill. In addition to performance, we examined blood lactate concentration [La-] and arterial oxygen saturation (SpO2) before, during, and after the RSR444. While there were no differences in peak speed or distance during set 1 or set 2, peak speed (p = 0.04 and 0.02, respectively) and distance (p = 0.04 and 0.02, respectively) were greater during set 3 and set 4 of RSN compared with RSH. There was no difference in the average acceleration achieved in set 1 (p = 0.45), set 2 (p = 0.26), or set 3 (p = 0.23) between RSN and RSH; however, the average acceleration was greater in RSN than RSH in set 4 (p < 0.01). Measurements of [La-] were higher during RSH than RSN immediately after Sprint 16 (10.2 ± 2.5 vs 8.6 ± 2.6 mM; p = 0.02). Estimations of SpO2 were lower during RSH than RSN, respectively, immediately prior to the commencement of the test (89.0 ± 2.0 vs 97.2 ± 1.5 %), post Sprint 8 (78.0 ± 6.3 vs 93.8 ± 3.6 %) and post Sprint 16 (75.3 ± 6.3 vs 94.5 ± 2.5 %; all p < 0.01). In summary, the RSR444 is a practical protocol for the implementation of a hypoxic repeated-sprint training intervention into the training schedules of team-sport athletes. However, given the inability of amateur team-sport athletes to maintain performance in hypoxic (FiO2 = 0.140) conditions, the potential for specific training outcomes (i.e. speed) to be achieved will be compromised, thus suggesting that the RSR444 should be used with caution.



This document has been peer reviewed.


To view the content in your browser, please download Adobe Reader or, alternately,
you may Download the file to your hard drive.

NOTE: The latest versions of Adobe Reader do not support viewing PDF files within Firefox on Mac OS and if you are using a modern (Intel) Mac, there is no official plugin for viewing PDF files within the browser window.