Designing for Future
Building Adaptive Reuse

Sheila Conejos

Submitted in total fulfilment of the requirements of the degree of

Doctor of Philosophy

Institute of Sustainable Development and Architecture
Bond University, Gold Coast, Australia

12 April, 2013
DECLARATION

This thesis contains no material that has been accepted for the award of another degree at a university or other educational institution. To the best of my knowledge and belief, it contains no material previously published or written by another person or persons except where due reference has been made.

SHEILA CONEJOS, Institute of Sustainable Development and Architecture, Bond University, Gold Coast, Australia, April 2013
ABSTRACT

(350 words)

Adaptive reuse of existing buildings can play a significant role in mitigating climate change by reusing embodied energy and resources in place and acting as a viable alternative to demolition and landfill. It also offers social benefits by revitalising familiar landmarks and preserving cultural and heritage values. Further, it is important that designers should explicitly consider maximising the adaptive reuse potential of new buildings at the time that they are designed and anticipate their future uses aside from its original use.

Reviewing the design principles implemented in the past, this research identifies a knowledge gap pertaining to an absence of clear criteria for future adaptive reuse and the lack of consensus as how to maximise adaptive reuse potential. Thus, this research is an explorative study and retrospectively analyses successful adaptive reuse projects with a view to establishing and testing a multi-criteria decision-making model that can be applied to new design projects. This research develops and applies a new rating tool known as adaptSTAR, which offers holistic and unified design criteria suitable for assessing the adaptive reuse potential of future buildings.

The research study has adopted a sequential mixed mode research methodology carried out in three stages. Stage 1 is qualitative and involves multiple case studies, where primary data is assembled alongside a thorough investigation of secondary data. Stage 2 develops from the outcome of Stage 1 and evaluates a list of potential design criteria to determine their weighted importance via an anonymous online survey sent to selected architects in Australia, and evaluates the case studies including proposing ways in which their original design could have been enhanced. Finally, Stage 3 validates the adaptSTAR model by testing it against Langston’s ARP model.
The findings of this research show that design criteria can be identified and weighted according to seven categories to calculate an adaptive reuse star rating, as well as proving that both the adaptSTAR and ARP models have strong relationships and produce results that are positively correlated. The research demonstrates that by applying adaptSTAR to future building projects, it will contribute to the objective of delivering greater sustainability of the built environment.

KEYWORDS: Adaptive Reuse, Sustainability, Design Principles, Obsolescence, Rating Tool, Australia

THIS THESIS WAS AWARDED THE CHARTERED INSTITUTE OF BUILDING (CIOB) EXCELLENT BUILDING POSTGRADUATE AWARD (FOR DOCTORAL RESEARCH) IN 2013
ACKNOWLEDGMENTS

It has been a worthwhile journey towards a doctoral degree in a field that I am passionate about. I wouldn’t be able to carry on without the support and encouragement from the people that God have provided for me here in Australia. I am forever grateful to all these people who made my journey memorable and I am sharing this bittersweet victory to all of you who made my dream a reality.

With great respect, I am forever grateful to my principal supervisor, Professor Craig Langston for his wisdom, encouraging words, priceless ideas, guidance and inspiration, which enabled me to achieve remarkable progress in my research journey. Craig taught me to trust and believe in myself and our research pursuits, as well as appreciate scientific research and its processes. He persuaded me to explore, be creative and pursue knowledge in whatever I do. His generosity is endless and the pilot study and data collection of this research as well as my conference trips to Hong Kong and Italy were funded through his Vice Chancellor Research Grants in 2010 and 2011.

I am also forever grateful to Professor Jim Smith, my secondary supervisor, who mentored me with constant enthusiasm and encouragement throughout my candidature, as well as providing me with opportunities to research and learn more in the fields of urban design and sustainable development. I also thank my fellow PhDs and ISDA staff for their kind assistance, and to Dr. Iderlina Mateo-Babiano, who gave me opportunity to do tutorial work at the School of Geography, Planning and Environmental Management, University of Queensland.

I would like to acknowledge the Australian Government and Bond University for funding my entire doctoral studies for three years through the International Postgraduate Research Scholarship grant, to the Bond University Graduate School of Research for additional travel funds and to the Couples for Christ (CFC) - Sydney for my thesis completion funds. Likewise, I thank the key stakeholders, especially the principal architects of the 12 award-winning case studies used in this research,
who gave their valuable time and expertise and helped me to appreciate the colourful world of adaptive reuse, architecture and sustainable design.

To the Tsui and Leano families, for the valuable guidance, spiritual enrichment and physical nourishment I received on many occasions. To Venus Tejano and Mclaine Calunsag, my best housemates in Brisbane; to my Singles for Christ (SFC) friends who offered me their prayers, homes and time. To Jeanelle Manalo and Art Martinez, for the statistical inputs they provided for my research. To my spiritual friends: you know who you are, at some point along this journey, you have walked with me.

Finally, to my one and only sister, Manang Rachel and my brother-in-law Professor Edward Webb for the financial support, love and inspiration and also to my beloved nephews, Mikhol and Mikhel; this is all yours as it is mine. Equally, I dedicate this to my late parents, Nanay Hura and Tatay Dronie, who instilled in me the importance of education and the wisdom in learning something new each day of my life.

To God be the Glory!

Sheila (Selah & Maris)
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIA</td>
<td>Australian Institute of Architects</td>
</tr>
<tr>
<td>ARP Model</td>
<td>Adaptive Reuse Potential Model</td>
</tr>
<tr>
<td>BESt</td>
<td>Building Environmental Standard</td>
</tr>
<tr>
<td>BIM</td>
<td>Building Information Modelling</td>
</tr>
<tr>
<td>BMS</td>
<td>Building Management System</td>
</tr>
<tr>
<td>BOMA</td>
<td>Building Owners and Managers Association</td>
</tr>
<tr>
<td>BREEAM</td>
<td>Building Research Establishment Environmental Assessment Method</td>
</tr>
<tr>
<td>BUHREC</td>
<td>Bond University Human Rights and Ethics Committee</td>
</tr>
<tr>
<td>CBD</td>
<td>Central Business District</td>
</tr>
<tr>
<td>CNYDDC</td>
<td>City of New York Department of Design and Construction</td>
</tr>
<tr>
<td>EBOM</td>
<td>Existing Building Operations and Maintenance</td>
</tr>
<tr>
<td>GBCA</td>
<td>Green Building Council of Australia</td>
</tr>
<tr>
<td>GGE/ GHG</td>
<td>Greenhouse Gas Emissions/ Greenhouse Gas</td>
</tr>
<tr>
<td>GPO</td>
<td>General Post Office</td>
</tr>
<tr>
<td>HMSO</td>
<td>Her Majesty's Stationery Office</td>
</tr>
<tr>
<td>ICC</td>
<td>Intraclass Correlation Coefficient</td>
</tr>
<tr>
<td>IEQ</td>
<td>Indoor Environmental Quality</td>
</tr>
<tr>
<td>IPCC</td>
<td>Intergovernmental Panel for Climate Change</td>
</tr>
<tr>
<td>LCA</td>
<td>Life Cycle Analysis</td>
</tr>
<tr>
<td>LEED</td>
<td>Leadership in Energy and Environmental Design</td>
</tr>
<tr>
<td>NSW</td>
<td>New South Wales</td>
</tr>
<tr>
<td>RAIA</td>
<td>Royal Australian Institute of Architects (now AIA)</td>
</tr>
<tr>
<td>UDIA</td>
<td>Urban Development Institute of Australia</td>
</tr>
<tr>
<td>UNFCCC</td>
<td>United Nations Framework Convention on Climate Change</td>
</tr>
<tr>
<td>USGBC</td>
<td>U.S. Green Building Council</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

ABSTRACT ... II

ACKNOWLEDGMENTS .. IV

ABBREVIATIONS .. VI

PUBLICATIONS ARISING FROM THIS THESIS .. XVII

CHAPTER 1 INTRODUCTION .. 1

1.1 MOTIVATION ... 1

1.2 BACKGROUND .. 2

1.3 PROBLEM STATEMENT AND RATIONALE ... 5

1.4 RESEARCH AIM AND OBJECTIVES ... 6

1.5 RESEARCH METHODOLOGY (OVERVIEW) .. 7

1.6 RESEARCH SIGNIFICANCE .. 8

1.7 SCOPE AND LIMITATIONS ... 9

1.8 STRUCTURE OF THE THESIS .. 10

CHAPTER 2 LITERATURE REVIEW .. 12

2.1 THE PURPOSE OF THIS CHAPTER ... 12

2.2 THEORETICAL AND CONCEPTUAL FRAMEWORK .. 13

2.3 SUSTAINABILITY AND THE CONCEPT OF REUSE .. 14

2.4 ADAPTIVE REUSE AND SUSTAINABILITY ... 17

2.5 ADAPTIVE REUSE, OBsolescence AND THE ARP MODEL................................. 28

2.6 ADAPTIVE REUSE AND DESIGN PRINCIPLES .. 36

2.7 FUTURE DESIGN DIRECTIONS ... 40

2.8 KNOWLEDGE GAPS .. 42

2.9 CONCLUDING REMARKS ... 42

CHAPTER 3 RESEARCH METHOD ... 44

3.1 THE PURPOSE OF THIS CHAPTER ... 44

3.2 RESEARCH DESIGN ... 45

3.3 SUBJECT, PARTICIPANTS, POPULATION AND SAMPLE 51
3.4 UNIT OF ANALYSIS AND RESEARCH VARIABLES ..52
3.5 RESEARCH INSTRUMENT AND DATA COLLECTION PROCEDURES53
3.6 ETHICAL CONSIDERATIONS ..57
3.7 SETTING AND ENVIRONMENT ...58
3.8 CRITERIA FOR EVALUATING RESEARCH ..63
 3.8.1 CREDIBILITY (INTERNAL VALIDITY) ..65
 3.8.2 TRANSFERABILITY (EXTERNAL VALIDITY) ...65
 3.8.3 CONFORMABILITY AND DEPENDABILITY (RELIABILITY)66
3.9 CONCLUDING REMARKS ...67

CHAPTER 4 LIST OF DESIGN CRITERIA ...68

4.1 THE PURPOSE OF THIS CHAPTER ...68
4.2 THE PILOT STUDY ..69
4.3 LIST OF DESIGN CRITERIA AND THE UNDERPINNING LITERATURE74
 4.3.1 LONG LIFE (PHYSICAL) ...74
 4.3.2 LOCATION (ECONOMIC) ...75
 4.3.3 LOOSE FIT (FUNCTIONAL) ..76
 4.3.4 LOW ENERGY (TECHNOLOGICAL) ..77
 4.3.5 SENSE OF PLACE (SOCIAL) ...79
 4.3.6 QUALITY STANDARD (LEGAL) ...80
 4.3.7 CONTEXT (POLITICAL) ...81
4.4 THE AWARD-WINNING AUSTRALIAN CASE STUDIES81
 4.4.1 EGAN STREET APARTMENTS ...82
 4.4.2 GRAND BABWORTH HOUSE ...83
 4.4.3 TOCAL VISITOR CENTRE ...84
 4.4.4 TOXTETH CHURCH AND HALL ..84
 4.4.5 BUSHELLS BUILDING ...85
 4.4.6 DEFENCE BUILDINGS ...86
 4.4.7 SULLY’S EMPORIUM ...87
 4.4.8 THE MINT COINING FACTORY ...88
 4.4.9 FORUM WELLNESS CENTRE ...89
 4.4.10 GEORGE PATTERSON WAREHOUSE ...90
CHAPTER 5 DEVELOPMENT OF THE ADAPTSTAR MODEL..........................113

5.1 THE PURPOSE OF THIS CHAPTER ...113

5.2 THE FINAL LIST OF DESIGN CRITERIA ...114
 5.2.1 PHYSICAL (LONG LIFE) ..116
 5.2.2 ECONOMIC (LOCATION) ...117
 5.2.3 FUNCTIONAL (LOOSE FIT) ...117
 5.2.4 TECHNOLOGICAL (LOW ENERGY) ..118
 5.2.5 SOCIAL (SENSE OF PLACE) ...118
 5.2.6 LEGAL (QUALITY STANDARD) ...119
 5.2.7 POLITICAL (CONTEXT) ..120

5.3 STATISTICAL ANALYSIS OF THE SURVEY RESULTS120

5.4 CONSENSUS TEST ..134

5.5 FINAL DEVELOPMENT OF THE ADAPTSTAR MODEL136

5.6 TESTING OF THE SELECTED CASE STUDIES USING ARP MODEL138

5.7 STRATEGIES FOR IMPROVED CASE STUDY REUSE142
 5.7.1 EGAN STREET APARTMENTS ...143
 5.7.2 GRAND BABWORTH HOUSE ...145
 5.7.3 TOCAL VISITOR CENTRE ..145
 5.7.4 TOXTETH CHURCH AND HALL ...147
7.4 IMPLICATIONS FOR FURTHER RESEARCH ... 177
7.5 IMPLICATIONS FOR PRACTICE .. 178
7.6 CONCLUDING REMARKS ... 179

REFERENCES ... 182

APPENDICES ... 198

APPENDIX A: APPROVAL LETTERS ... 198
APPENDIX B: THE TWELVE CASE STUDIES ... 202
APPENDIX C: EXAMPLE CODING OF EXPERTS’ INTERVIEW RESULTS FROM NVIVO 246
APPENDIX D: ONLINE SURVEY QUESTIONNAIRE ... 254
APPENDIX E: STAGE 2 SUPPORTING DOCUMENTS .. 263
APPENDIX F: adaptSTARQuestionnaire TEMPLATE ... 267
APPENDIX G: ADAPTIVE REUSE POTENTIAL MODEL (LANGSTON, 2008) 269
APPENDIX H: ADAPTIVE REUSE POTENTIAL (ARP) TESTING DOCUMENTS 280
APPENDIX I: adaptSTARTemplates (AS-built) .. 291
APPENDIX J: adaptSTARTemplates (IMPROVED) ... 303
LIST OF TABLES

Table 2-1 GREEN STAR Existing Building Categories and Weightings20
Table 2-2 GREEN STAR: Office Existing Buildings Certified Ratings21
Table 2-3 Summary of Sustainability Assessment Methods24
Table 2-4 Types of Obsolescence (Based on Underpinning Literature)31
Table 3-1 The Selected Adaptive Reuse Case Studies in NSW, Australia61
Table 4-1 List of Design Criteria (Physical Category) ...75
Table 4-2 List of Design Criteria (Economic Category) ..76
Table 4-3 List of Design Criteria (Functional Category) ...77
Table 4-4 List of Design Criteria (Technological Category)78
Table 4-5 List of Design Criteria (Social Category) ..79
Table 4-6 List of Design Criteria (Legal Category) ...80
Table 4-7 List of Design Criteria (Political Category) ...81
Table 4-8 The Fifteen (15) Experts Involved in the Selected Case Studies93
Table 4-9 Long Life Design Criteria with Experts’ Interview Results95
Table 4-10 Location Design Criteria with Experts’ Interview Results97
Table 4-11 Loose Fit Design Criteria with Experts’ Interview Results98
Table 4-12 Low Energy Design Criteria with Experts’ Interview Results100
Table 4-13 Sense of Place Design Criteria with Experts’ Interview Results102
Table 4-14 Quality Standard Design Criteria with Experts’ Interview Results105
Table 4-15 Context Design Criteria with Experts’ Interview Results107
Table 5-1 Distribution of Survey Respondents ...115
Table 5-2 Survey Questionnaire and List of Design Criteria116
Table 5-3 Descriptive Statistics for the 7 Obsolescence Categories122
Table 5-4 Descriptive Statistics for the 26 Design Criteria123
Table 5-5 Relationship of the Seven Categories to Each Other ..132
Table 5-6 Alpha Coefficient Table ...134
Table 5-7 Consensus Test Illustration ..135
Table 5-8 adaptSTAR Criteria Weightings ...137
Table 5-9 ARP Testing Results of the Twelve Case Studies139
Table 6-1 adaptSTAR Star Ratings ..155
Table 6-2 Summary of adaptSTAR and ARP Results (As-built)164
Table 6-3 Summary of adaptSTAR and ARP Results (Improved)166
Table 6-4 Summary of adaptSTAR and ARP Results (As-built v Improved)168
Table 6-5 Comparison of Useful Life Forecasts (As-built v Improved)169
LIST OF FIGURES

Figure 1-1 Research Plan Logic ... 7
Figure 2-1 Adaptive Reuse Potential Model .. 36
Figure 3-1 Research Plan (Methodology) .. 46
Figure 3-2 Stage 1 of the Research Methodology 47
Figure 3-3 Stage 2 of the Research Methodology 49
Figure 3-4 Stage 3 of the Research Methodology 50
Figure 4-1 The Facade of the GPO Building, Melbourne 70
Figure 4-2 The Interiors of the GPO Building, Melbourne 72
Figure 4-3 GPO Building, Melbourne (1867-1900) 73
Figure 4-4 GPO Building, Melbourne (Adaptive Reuse Process) 73
Figure 4-5 Egan Street Apartments ... 82
Figure 4-6 Grand Babworth House ... 83
Figure 4-7 Tocal Visitor Centre ... 84
Figure 4-8 Toxteth Church and Hall ... 85
Figure 4-9 Bushells Building ... 86
Figure 4-10 Defence Buildings .. 87
Figure 4-11 Sully’s Emporium ... 88
Figure 4-12 The Mint Coining Factory ... 89
Figure 4-13 Forum Wellness Centre ... 90
Figure 4-14 George Patterson Warehouse ... 91
Figure 4-15 Prince Henry Hospital ... 92
Figure 4-16 Proposed adaptSTAR Model (Initial Development) 110
Figure 4-17 Sample Application of the adaptSTAR Model 111
Figure 4-18 Proposed adaptSTAR Model (Initial Development) 110
Figure 5-1 Histogram of Obsolescence Category Importance 126
Figure 7-1 The adaptSTAR Model...175
PUBLICATIONS ARISING FROM THIS THESIS

The results of this thesis are published in peer reviewed journals and conference proceedings:

