2016

Mixed reality in higher education: Pedagogy before technology

James Birt
Bond University, james_birt@bond.edu.au

Michael A. Cowling
Cenral Queensland University

Follow this and additional works at: http://epublications.bond.edu.au/fsd_papers

⚠️ Part of the Graphics and Human Computer Interfaces Commons, Instructional Media Design Commons, Interactive Arts Commons, Interdisciplinary Arts and Media Commons, and the Scholarship of Teaching and Learning Commons

This work is licensed under a [Creative Commons Attribution-Share Alike 4.0 License](http://creativecommons.org/licenses/by-sa/4.0/).

Recommended Citation

This Conference Presentation is brought to you by the Faculty of Society and Design at ePublications@bond. It has been accepted for inclusion in Faculty of Society and Design Publications by an authorized administrator of ePublications@bond. For more information, please contact Bond University's Repository Coordinator.
Mixed Reality in Higher Education: Workshop Summary

<table>
<thead>
<tr>
<th>Topic</th>
<th>Duration (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome, introductions & housekeeping</td>
<td>5</td>
</tr>
<tr>
<td>Future Proof: future jobs, skills & why mixed reality</td>
<td>15</td>
</tr>
<tr>
<td>Mixed reality hands on: featuring three (3) case studies</td>
<td>25</td>
</tr>
<tr>
<td>Break</td>
<td>5</td>
</tr>
<tr>
<td>Heart MR: simulation + learning analytics breakdown</td>
<td>30</td>
</tr>
<tr>
<td>Pedagogy before technology & lessons learned</td>
<td>10</td>
</tr>
<tr>
<td>Concept mapping a mixed reality pedagogy pilot study – from learning outcomes to applied simulation</td>
<td>25</td>
</tr>
<tr>
<td>Workshop conclusion & feedback survey</td>
<td>5</td>
</tr>
</tbody>
</table>
Technology just part of the class

ADOPTING technology in the classroom should just be a part of the learning process, an academic from Queensland’s CQUniversity says.

Dr Michael Cowling has written a report on technology, which he will present this week in Adelaide, suggesting it was better to stop thinking about technology as an enhancement or a distraction and for teachers to view it as just part of the classroom.

He said this was particularly important at technology-burdened schools, with one study indicating a "near educational" level of access to mobile phones or computers and another showing 80 per cent of students preferring the Internet to finding information, rather than looking in a book.

"When we all adopted whiteboards instead of chalkboards or digital projectors instead of overhead projectors, we didn’t spend 10 years talking about a ‘whiteboard-led classroom’ or a ‘projector-enabled classroom’,” he said. Dr Cowling said he looked towards technology-led pedagogy needed to be replaced instead with pedagogy-led technology.

Acknowledging that learning was the most important part of education.

Dr Michael Cowling will present his paper at the International Education Association and Australia New Zealand Student Services Association joint conference at the Hilton Adelaide from today until Friday.

www.michaelacowling.com

The pen is mightier than the sword, but the computer is mightier than both
Merging physical and virtual worlds through virtual reality, augmented reality, 3d printing & game technology
The Future of Jobs

• 4th Industrial Revolution

• Developments in AI, robotics, visualization, nanotechnology, 3-D printing, genetics & biotechnology

• Widespread disruption to business & labour markets worldwide – automation + technology

• 40% of current jobs gone in 10 years → primary disruption white collar jobs!

Watch Future Proof – Four Corners ABC
Gartner Hype Cycle for Emerging Technologies, 2016

Technology Drivers

Source: Gartner, Inc. All rights reserved.

© 2016 Gartner, Inc. and/or its affiliates. All rights reserved.
“most of the job titles will be the same as today ... we will still have carpenters, nurses, road repairers, even teachers ... but the nature of what they do and the skills they need will change ... just as they have over the past 20 years”

Ron Johnston Executive Director, Australian Centre for Innovation, University of Sydney

The Conversation (Aug 2, 2016)
<table>
<thead>
<tr>
<th>Abilities</th>
<th>Basic Skills</th>
<th>Cross-functional Skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cognitive Abilities</td>
<td>Content Skills</td>
<td>Social Skills</td>
</tr>
<tr>
<td>» Cognitive Flexibility</td>
<td>» Active Learning</td>
<td>» Coordinating with Others</td>
</tr>
<tr>
<td>» Creativity</td>
<td>» Oral Expression</td>
<td>» Emotional Intelligence</td>
</tr>
<tr>
<td>» Logical Reasoning</td>
<td>» Reading</td>
<td>» Negotiation</td>
</tr>
<tr>
<td>» Problem Sensitivity</td>
<td>» Comprehension</td>
<td>» Persuasion</td>
</tr>
<tr>
<td>» Mathematical Reasoning</td>
<td>» Written Expression</td>
<td>» Service Orientation</td>
</tr>
<tr>
<td>» Visualization</td>
<td>» ICT Literacy</td>
<td>» Training and Teaching Others</td>
</tr>
<tr>
<td>Physical Abilities</td>
<td>Process Skills</td>
<td>Resource Management Skills</td>
</tr>
<tr>
<td>» Physical Strength</td>
<td>» Active Listening</td>
<td>» Management of Financial Resources</td>
</tr>
<tr>
<td>» Manual Dexterity and</td>
<td>» Critical Thinking</td>
<td>» Management of Material Resources</td>
</tr>
<tr>
<td>Precision</td>
<td>» Monitoring Self and Others</td>
<td>» People Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>» Time Management</td>
</tr>
<tr>
<td>Technical Skills</td>
<td>Systems Skills</td>
<td>Complex Problem Solving Skills</td>
</tr>
<tr>
<td>» Equipment Maintenance</td>
<td>» Judgement and Decision-making</td>
<td>» Complex Problem Solving</td>
</tr>
<tr>
<td>and Repair</td>
<td>» Systems Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Troubleshooting</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2016 – The Future of Jobs Report - Core Work skills
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-to-Adoption Horizon: One Year or Less</td>
<td>Bring Your Own Device</td>
<td>Bring Your Own Device</td>
</tr>
<tr>
<td></td>
<td>Flipped Classroom</td>
<td>Cloud Computing</td>
</tr>
<tr>
<td></td>
<td>Learning Analytics/Adaptive Online Learning</td>
<td>Flipped Classroom</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Learning Analytics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Online Learning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time-to-Adoption Horizon: Two to Three Years</td>
<td>3D Printing</td>
<td>Adaptive Learning Technologies</td>
</tr>
<tr>
<td></td>
<td>Augmented/Virtual Reality</td>
<td>Location Intelligence</td>
</tr>
<tr>
<td></td>
<td>Makerspaces</td>
<td>Makerspaces</td>
</tr>
<tr>
<td></td>
<td>Wearable Technology</td>
<td>Wearable Technology</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time-to-Adoption Horizon: Four to Five Years</td>
<td>Affective Computing</td>
<td>Adaptive Learning Technologies</td>
</tr>
<tr>
<td></td>
<td>Next-Generation Batteries</td>
<td>Augmented Reality</td>
</tr>
<tr>
<td></td>
<td>Quantified Self</td>
<td>Machine Learning</td>
</tr>
<tr>
<td></td>
<td>Robotics</td>
<td>Networked Objects</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2016 NMC Technology Outlook

Australian Tertiary Education

A Horizon Project Regional Report
“this course is a 'skills' learning course ... there should be a way for us to actually get more time doing skills ... distance students at a severe disadvantage ... I am missing out ... you can read about the skills but its impossible to get feedback and to know if you’re doing it right ... no substitution for experience ... any software or equipment to at least go through the motions of doing the skills?”

Sample - Student Evaluations
How Mixed Reality Pedagogy fits in
Background Research

• Difficult to teach complex processes - without real world models (Tasker & Dalton, 2008)

• Traditional teaching methods often use abstract visualizations – but don’t capture complexity (Williamson et al., 2012)

• Focus on technology enhanced T&L (Johnson et al., 2016; Keppell et al., 2011)

• Visualizations are positive learning support tools (Mayer, 2014; Höffler, 2010)

• Kinaesthetic tools better form mental models (Pass & Sweller, 2014)

Most prior work in (multimedia...blended...dual modality) learning has been formed around words & pictures with less attention to complex learning environments such as interactive visualisations, games & simulations (Ayres, 2015)
Case Study: Mixed Reality Simulation in Paramedic Distance Education

Traditional Teaching Method

Mixed Reality Pedagogy
Case Study: Mixed Reality in ICT Networking to Visualize Complex Theoretical Multi-Step Problems

Traditional Teaching Method

Mixed Reality Pedagogy
Case Study: Mixed Reality and Spatial Learning Analytics to Facilitate Learning of Anatomy

Traditional Teaching Method

Mixed Reality Pedagogy
Hands-On

⇒ Take some time to explore the three (3) case studies

• **Paramedics app** available on google play and IOS app store – search ‘Laryngoscopy AR’ – requires a head mounted google cardboard device

• **Networking app** available on google play and IOS app store – search ‘Networking AR’ – can be used on any phone or tablet device

• Heart MR ⇒ currently available via phones in the room or built to your android device (only)

• Tools & markers are available in the room

If you download an app and want to use it later, all markers and 3d printable files are available at www.mixedrealityresearch.com
<table>
<thead>
<tr>
<th>Visualisation:</th>
<th>Paramedics</th>
<th>Networking</th>
<th>Anatomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUESTIONS (Please cross the most appropriate response) - Likert Scale 1 - 5 - use 0 for N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accessibility: being accessible or available for use</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Learnability: allowing accomplishment of the learning objective</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Cost: affordability in terms of monetary cost or efficiency in terms of time</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Satisfaction: providing confidence in meeting the learning objective</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Memorability: effectiveness or ease of re-establishing proficiency of the learning objective after a period (length) of time (past activities)</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Usability: responsiveness, robustness, stability or errors in use (e.g. motion sickness, frame rates, bugs)</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Manipulability: allowing interactive variable manipulation e.g. rotation, time, scene objects, etc.</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Navigability: allowing spatial translation of the viewpoint</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Visibility: providing a clear interface design to observe (vision) and interpret the learning objective</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Fidelity: providing an accurate representation of the real world (including visual, touch and sound)</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Communication: supporting discussion of learning objectives between stakeholders (instructor, learners, others)</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Creativity: allowing emergent, creative, playful discovery towards the learning objectives</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Engagement: novelty, aesthetics, or feedback to focus learner attention and involvement on the learning objective</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Motivation: wanting to complete the learning objective</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Additional Comments</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Follow up Study – Using Mixed Reality + Analytics
Analytics: Capture learner <> mixed reality material interaction(s) and learning outcomes

<table>
<thead>
<tr>
<th>Information</th>
<th>Past</th>
<th>Present</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>What happened?</td>
<td>What is happening now?</td>
<td>What will happen?</td>
</tr>
<tr>
<td></td>
<td>(Reporting)</td>
<td>(Alert)</td>
<td>(Extrapolation)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insight</th>
<th>Past</th>
<th>Present</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>How and did it happen?</td>
<td>What’s the next best action?</td>
<td>What’s the best/worst that can happen?</td>
</tr>
<tr>
<td></td>
<td>(modelling, experimental design)</td>
<td>(Recommendation)</td>
<td>(prediction, optimisation, simulation)</td>
</tr>
</tbody>
</table>

Davenport et al., (2010)
[BYOD Mixed Reality Simulation Pedagogy]
Learning Outcomes + Spatial Interaction Data

Model

LMS/Data Storage

[Evidence]
Analytics + Visualisation(s)

LEARNERS

Developer (Usability)

Higher Education Provider (Learning)

Industry Body (Skills)
Simulation Construction Tools

- Unity3d game engine (www.unity3d.com)
- Vuforia augmented reality plugin (www.vuforia.com/)
- MySQL (www.mysql.com/)
- Php (secure.php.net/)
- Google Cardboard headset (vr.google.com/cardboard/)
Introductory AR in Unity3d using Vuforia

→ Beginners Guide Only using a single image target

Dr James Birt

tinyurl.com/IntroUnityAR
Vuforia with Multitargets for AR/VR

→ Allows 360° physical rotation

- developer.vuforia.com
- Signup
- Downloads > Samples > Digital Eyewear > Unity3d: AR/VR Sample scene
- Develop > License Manager > Add License Key
- Develop > Target Manager > Add Database
- Develop > Target Manager > [DBName] > Add Target(s) – this example uses six (6)
- Develop > Target Manager > [DBName] > Download Database

Shown is a 6cm³ marker – which will allow solid tracking @ 40-50 cm the theoretical suggestion is 1cm (marker size) for 10cm distance but practice is more like 7cm distance. This can be improved using polypropylene paper which absorbs light. I also recommend 5 star image markers.
Unity3d

- Download Unity3d
- Create new Project
- Import Digital Eyewear Scene
- Import Image Database

unity3d.com/
AR Camera (Vuforia Behaviour)

- Click the ARCamera and view the inspector window
- Vuforia Behaviour (Script) – copy your license key to the Vuforia Behaviour Script App License Key
- Switch the **Camera Device Mode** to MODE_OPTIMIZE_SPEED – this will help with real-time image movement & pickup
- For now I will leave Tracked Images & Objects at one (1) but if you want to track multiple targets you will need to modify this number
- *Please note: Even though we are using a Multi target marker we are only ever tracking one (1) target at a time*
AR Camera (Digital Eyewear)

- For this example we are using a generic Google Cardboard
- This method uses a video see-through method using your BYOD mobile phone

library.vuforia.com/articles/Training/Vuforia-for-Digital-Eyewear
AR Camera (Database Load)

```xml
<?xml version="1.0" encoding="UTF-8"?>
<QCARConfig>
  <Tracking>
    <ImageTarget name="CubeMRMarker.Right" size="6.000000 6.000000"/>
    <ImageTarget name="CubeMRMarker.Top" size="6.000000 6.000000"/>
    <ImageTarget name="CubeMRMarker.FRont" size="6.000000 6.000000"/>
    <ImageTarget name="CubeMRMarker.Back" size="6.000000 6.000000"/>
    <ImageTarget name="CubeMRMarker.Bottom" size="6.000000 6.000000"/>
    <ImageTarget name="CubeMRMarker.Left" size="6.000000 6.000000"/>
    <MultiTarget name="CubeMRMarker">
      <Part name="CubeMRMarker.Left" translation="-3.0 0 0" rotation="AD: 0 1 0 -90"/>
      <Part name="CubeMRMarker.Right" translation="3.0 0 0" rotation="AD: 0 1 0 90"/>
      <Part name="CubeMRMarker.FRont" translation="0 0 3.0" rotation="AD: 1 0 0 0"/>
      <Part name="CubeMRMarker.Back" translation="0 0 -3.0" rotation="AD: 0 1 0 180"/>
      <Part name="CubeMRMarker.Top" translation="3.0 0 0" rotation="AD: 1 0 0 -90"/>
      <Part name="CubeMRMarker.Bottom" translation="0 -3.0 0" rotation="AD: 1 0 0 90"/>
    </MultiTarget>
  </Tracking>
</QCARConfig>
```
Add AR/VR asset(s) to scene

• Drag an instance of the MultiTarget prefab into your scene – rename e.g. CubeMarker

• Set your ChildTargets to each of your Image Markers from your database – turn off mesh renderer – you don’t want to see the cube

• Place your 3d model onto your marker and make it a child

• Add any 3d spatial GUI elements to your marker
Simulation Breakdown → Login

- Display login GUI
- Allow login entry – in this demo we allow all logins (for authentication you would query your user database)
- Record details
- On successful Login - Display marker instructions
Simulation Breakdown → Main Menu

- Turn off Login & Marker display GUI
- Turn on Spatial GUI Menus – Learner Observation Mode & Examination Mode

When marker found - switch off camera feed to focus user attention ... user(s) virtual arm has been established with the AR setup. The marker is still tracked in real-time but distraction is reduced.
Simulation Breakdown

Learner Observation Mode

As the user physically moves the cube (or their head) annotations become visible. The user can also highlight elements of the model by focusing the reticule over the mesh object. This establishes a spatial connection to the user. The user can turn on or off annotations by focusing the reticule over the menu items.

- Turn off Spatial GUI Menus – Learner Observation Mode & Examination Mode
- Turn on Annotation (on/off) Mode – This allows for user(s) formative learning
Simulation Breakdown → Learner Examination Mode

- Questions are randomised in this case five (5) sample questions
- As the user selects answers these are added to the mesh array for later storage – we record all focused meshes to record how the user interacts (e.g. confusion/uncertainty – flipping between meshes)
- A timer is recorded per question
- Spatial 3d data is recorded 24x/s to allow for observation replay
- Direction: \{X,Y,Z\} cube translation
- Magnitude: cube distance to camera
- Quaternion: \{X,Y,Z,w\} cube rotation
Simulation Breakdown → Data (Analytics) Storage

- Create unity WWWForm();
- Add fields using form.addField();
- $Post - URL/phpfile using WWW(URL, form);
- phpfile: create timestamp: date('Y-m-d H:i:s'); & update database – for the example this is hardcoded – you should check authentication
- Wait for write confirmation & send back to Unity
- You should also use a hashing function (e.g. MD5) to improve security NOT done for this example
- Note: Formative observations are currently NOT recorded for data analytics – only exams

<table>
<thead>
<tr>
<th>Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>attemptID (primary key)</td>
</tr>
<tr>
<td>timestamp (server time)</td>
</tr>
<tr>
<td>user (login details)</td>
</tr>
<tr>
<td>questions (random Q order)</td>
</tr>
<tr>
<td>answers (T/F)</td>
</tr>
<tr>
<td>time per question</td>
</tr>
<tr>
<td>mesh focus per question</td>
</tr>
<tr>
<td>direction {x,y,z - translation} 24x/s</td>
</tr>
<tr>
<td>magnitude {d – camera distance} 24x/s</td>
</tr>
<tr>
<td>Quaterinion {x,y,z,w - rotation} 24x/s</td>
</tr>
</tbody>
</table>

Dashboard

- At present the dashboard is a listing of all recorded actions from the SQL database using a php file

- The ultimate aim of the dashboard is to allow an [observer] to:
 - List all users that have/have not completed the simulation pedagogy
 - Check [learner] answers & method/time in answering
 - Search for a [learner] and [observe] (replay) their attempt using the recorded 3d spatial data [translation, distance and rotation]
Pedagogy before technology & lessons learned
Pedagogy before technology

What is the Problem?

How Can I Solve the Problem?

How can Technology Help?

Reflect & Revise
Paramedic Distance Education: The Problem

“this course is a 'skills' learning course ... there should be a way for us to actually get more time doing skills ... distance students at a severe disadvantage ... I am missing out ... you can read about the skills but its impossible to get feedback and to know if you’re doing it right ... no substitution for experience ... any software or equipment to at least go through the motions of doing the skills?” Paramedic Student Learner(s) (201x-2014)
Paramedic Distance Education: Solving

- [Discipline expert] we need every student to have a portable airways mannequin & cheap tools to practice the skills - but cost is prohibitive … residential schools work … but not held early enough for students
- [Mixed Reality Team] tools could be provided to students by 3D printing them (cost/set) ~ $1 AUD + postage
- [Mixed Reality Team] Airways mannequin could be simulated virtually using a mobile phone
- [Discipline expert] students would need both hands free, so the phone would need to be mounted in their eyeline
- [Mixed Reality Team] we can provide a hat and 3d printed hat mount
- [Mixed Reality Team] A simulation app can then be constructed using a free game engine [Unity3d] that could observe and monitor [learner] skills
Need to create a 1:1 mapping of the skills
Paramedic Distance Education: Reflection

• [Learners] were very excited ... [practice] the skills at home ... [learner] more involved in the course & less isolated
• [Observers] found most [learners] struggled with the setup of the equipment & progression through the required steps ... especially when introducing the Magill forceps & removing the foreign body
• [Learners] commented “my hands seem to pass by the [simulated airways manikin]” ... “spent too much time focusing on the markers & not on the [simulated airways manikin] ... resulting in frustration when the simulation would present red boxed & restart
• Many [learners] commented that they did not get around to using the [simulation] highlighting time struggles and being “extra” work
• [Head Paramedic] on reflection should have encouraged more frequent use of the simulation with a reminder & linkage to the learning tasks
Paramedic Distance Education: Revision

Solve V1 issues but keep learning outcomes

youtu.be/wIfwZFKlSQU
Concept mapping a mixed reality pedagogy pilot study
Let’s Talk About You.

• How does this work for you in your classroom?

• Remember, PEDAGOGY before TECHNOLOGY

What is the Problem?

How Can I Solve the Problem?

How can Technology Help?

Reflect & Revise
Let’s Talk About You

→ What is the Problem?

• Start with your learning outcomes:
 • Which ones do students struggle with?
 • How do they struggle with them?
 • What do you think the problem is?

• Take 5 minutes to think of the most difficult problem students face in one of your classes, then we will ask a few people in the audience to share

• You can discuss with your table group if you’d like
Let’s Talk About You
➔ How Can I Solve the Problem?

• Pick a small problem to solve (can’t solve the whole semester at once)
 • {Pretend you have a wand} ➔ If [you] could do anything, what would help solve this problem?

• Take 5 minutes to write down the solution

• Remember there are no limits here, let your mind run free with whatever approach you think would best solve this problem you have

• Again, feel free to work with your table group on this
Let’s Talk About You

➔ How can Technology Help?

• Can you do that lesson right now? How would you do it?
• Could technology help with that lesson? ➔ Think about the cases we presented
• Make sure you keep the purpose in mind, what is the lesson trying to teach, what do the students struggle with, and how does your method help with that outcome
• Take 5 minutes to come up with a solution that you think might work
Workshop Conclusion Survey

Presenters: Dr James Birt (Bond University) & Dr Michael A. Cowling (CQUniversity)

Thank you for participating. Your feedback on the experience, process and content is always appreciated.

<table>
<thead>
<tr>
<th>QUESTIONS (Please cross the most appropriate response) - Likert Scale 1 - 5</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Was the workshop content relevant?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Was the workshop content comprehensive?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Was the workshop content easy to understand?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Did you find the workshop well-paced?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Did you find the workshop engaging and interactive?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Did the workshop contain a good mix of listening and discussion?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Were the facilitators knowledgeable?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Were the facilitators well prepared?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Where the facilitators responsive to questions?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Did you find the activities useful learning experiences?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Overall how satisfied were you with this workshop?</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Additional Comments