PhD Thesis

By

Amanda Lynn Forbes

QUINAZOLINE-BASED ALPHA1-ADRENOCEPTOR ANTAGONISTS AND PROSTATE CANCER

Submitted in the fulfilment of the requirements of the degree of Doctor of Philosophy by Research

December 2015
ABSTRACT

Early stage prostate cancer is highly manageable using definitive radical prostatectomy and/or radiotherapy techniques. Unfortunately, for some men, transition to castrate-resistant prostate cancer is both inevitable and incurable with few life-extending therapies available. Therefore, there is an urgent need for novel agents to improve the oncological and survival outcomes for these last-resort patients. One such modality may be α1-adrenoceptor antagonists. Clinically, some of these drugs reportedly increase benign and cancerous prostatic apoptosis. In vitro studies indicate that this anticancer effect occurs via α1-adrenoceptor independent mechanisms. However, the cytotoxic profile of these drugs have yet to be fully characterised, including whether these agents may be useful in improving anticancer treatment efficacy. To address the gaps in literature, the relative cytotoxic potencies and underlying cell death mechanisms (apoptosis and autophagy) were determined for six α1-adrenoceptor antagonists on castrate-sensitive and castrate-resistant prostate cancer cells. Molecular mechanisms were explored using immunoassays. The effects of these drugs were also investigated on normoxic or hypoxic irradiated prostate cancer cells to mimic outer and inner portions of a solid tumour. In an adjunct study, comparisons between the cytotoxic profile of doxazosin and the chemotherapeutic mitomycin c were made in an in vitro model of bladder cancer intravesical therapy. Overall, prazosin and doxazosin were found to be equipotent and were the most potent of all investigated drugs by inducing apoptosis and/or autophagy in a cell type-dependent manner. This cytotoxic effect was attributed to decreased mTOR/p70S6K signalling coupled with increases in p27 and p38 mitogen-activated protein kinase. Prazosin was also found to selectively radiosensitise hypoxic prostate cancer cells. This effect was characterised by increased reactive oxygen species and suppression of HIF-1α accumulation, further implicating mTOR-signalling as an underlying cytotoxic mechanism. Exploration of additional novel uses of these drugs revealed that doxazosin was 6-times more toxic than mitomycin C on bladder cancer cells in modelling of intravesical therapy. Taken together, these findings indicate that prazosin/doxazosin have potent cytotoxic actions in prostate cancer cells that are characterised by induction of apoptosis and autophagy, possibly by inhibition of the mTOR-signalling cascade. This is the first report of radiosensitising effects of these
drugs in prostate cancer cells, suggesting that these agents may have novel clinical benefits for patients undergoing radiotherapy. Likewise, the preliminarily findings of this thesis suggest that these drugs may be a novel alternative intravesical treatment option for bladder cancer and warrants further investigation.
DECLARATION

This thesis is submitted to Bond University in fulfilment of the requirements of the degree of Doctor of Philosophy. This thesis represents my own original work towards this research degree and contains no material which has been previously submitted for a degree or diploma at this University or any other institution, except where due acknowledgement is made.

_________________________________ ___________________
Amanda Lynn Forbes Date

23 December 2015
ACKNOWLEDGEMENTS

I would like to acknowledge and thank the following people for their guidance and support throughout my PhD.

Firstly, I would like thank my supervisors Dr Catherine McDermott, Prof Russ Chess-Williams and Dr Shailendra Anoopkumar-Dukie for giving me the opportunity to undertake this PhD project. It was an absolute privilege and pleasure to be their student, and I will be forever grateful for their encouragement and support during my candidature.

Thank you to the Bond University Faculty of Health Sciences and Medicine staff and students, particularly those in the Centre for Urology Research team, who made this work possible. I feel incredibly blessed to have the opportunity to work aside such friendly colleagues, and I will never forget the joys we have shared in the lab. I would like to especially acknowledge and thank Kylie and Stefanie for making this journey such a wonderful experience.

A special thank you goes to Prof David Christie and fellow staff at Genesis Cancer Care (Southport, QLD). Not only were they a pleasure to work with, they have been incredibly accommodating and patient over the many weeks (months) of data collection.

Lastly, I would like to dedicate this thesis to my parents Darren and Kathy Forbes, and especially to my future-husband Mick. Without their emotional, financial and physical support, this work would have not been possible. They have lead by example in teaching me resilience and the meaning of and hard work, and for that, I am forever grateful. I am eternally indebted to Mick for his unconditional support and endless patience – from countless trips driving me to and from Bond University, to pretending to understand my scientific tangents. I couldn’t imagine a better companion to support me during my challenges and celebrate my successes.
PUBLICATIONS

JOURNAL ARTICLES AS A RESULT OF THIS THESIS:

ABSTRACTS AS A RESULT OF THIS THESIS:

TABLE OF CONTENTS

Abstract .. i
Declaration ..iii
Acknowledgements ..v
Publications ..vii
Table of Contents ...ix
Abbreviations ..xi

Chapter 1: Introduction ... 1
 1.1 Human prostate: anatomy and function 3
 1.2 Prostate cancer ... 3
 1.3 Alpha1-adrenoceptors .. 33
 1.4 Alpha1-adrenoceptor antagonists .. 37
 1.5 Aims .. 40

Chapter 2: General Methods .. 41

Chapter 3: Relative Cytotoxic Potencies and Cell Death Mechanisms of Alpha1-ADR Antagonists ... 55
 3.1 Background ... 57
 3.2 Aims ... 68
 3.3 Materials and Methods .. 69
 3.4 Results .. 75
 3.5 Discussion .. 88

Chapter 4: Molecular Mechanisms of Alpha1-ADR Antagonist-induced Cytotoxicity ... 93
 4.1 Background ... 95
 4.2 Aims ... 107
 4.3 Materials and Methods .. 108
 4.4 Results .. 120
 4.5 Discussion .. 143
Chapter 5: Effects of Prazosin in Combination with Irradiation on Prostate Cancer Cells ..155

5.1 Background ..157
5.2 Aims ..173
5.3 Materials and Methods ..174
5.4 Results ..184
5.5 Discussion ..201

Chapter 6: Future Directions ..207

6.1 Background ..209
6.2 Aims ..215
6.3 Materials and Methods ..216
6.4 Results ..223
6.5 Discussion ..239

Chapter 7: General Discussion ..245

References ..265
ABBREVIATIONS

ADR Adrenoreceptor
ADAMTS A disinegrin and metalloproteinase with throboosponin motifs
AR Androgen receptor
ASTRO American Society for Radiation Oncology
AUA American Urological Association
BPH Benign prostatic hyperplasia
Cited2 Cbp/p300-interacting transactivator with Gly/Asp-rich arboxy-terminal domain 2
DCF-DA Dichloro-dihydro-fluorscein diacetate
DHT Dihydrotestosterone
DMSO Dimethyl sulfoxide
ECM Extracellular matrix
EGF Epidermal growth factor
EGFR Epidermal growth factor receptor
ERK Extracellular-related kinase
FADD Fas-associated death domain
FAK Focal adhesion kinase
FGF Fibroblast growth factor
FDA Food and drug administration (USA)
HGPIN High-grade prostatic neoplasia
HIF Hypoxia-inducible factor
LBD Ligand-binding domain
LC3 Ligand binding domain
LHRH Lutenising hormone-releasing hormone
LUTS Lower urinary tract symptoms
GAG Glycosaminoglycans
Gy Gray
MAPK Mitogen-activated protein kinase
mTOR Mammalian (mechanistic) target of rapamycin
NFAT Nuclear factor of activated T-cells
PBS Phosphate buffered saline
PI3P Phosphatidylinositol 3-phosphate
PLC Phospholipase C
PMSF Phenylmethylsulfonyl fluoride
PKC Protein kinase C
PSA Prostate specific antigen
PDGF Platelet-derived growth factor
pVHL Von Hippel-Lindau
ROS Reactive oxygen species
RP Radical prostatectomy
TIMP Tissue inhibitor of metalloproteinase
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGA</td>
<td>Therapeutic Goods Administration (Australia)</td>
</tr>
<tr>
<td>TGF</td>
<td>Tumour growth factor</td>
</tr>
<tr>
<td>TRP</td>
<td>Transient receptor potential channels</td>
</tr>
<tr>
<td>TSC</td>
<td>Tuberous sclerosis protein</td>
</tr>
<tr>
<td>TNF</td>
<td>Tumour necrosis factor</td>
</tr>
<tr>
<td>TURP</td>
<td>Transurethral resection of the prostate</td>
</tr>
<tr>
<td>TURBT</td>
<td>Transurethral resection of the bladder tumour</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>VEGFR</td>
<td>Vascular endothelial growth factor receptor</td>
</tr>
</tbody>
</table>