PhD Thesis

by

Stefanie Elizabeth Farr

INTRAVESICAL GEMCITABINE TREATMENT:
REPERCUSSIONS ON NORMAL BLADDER FUNCTION

Submitted in total fulfilment of the requirements of the degree of
Doctor of Philosophy by Research

July 2015
ABSTRACT

Intravesical treatment for non-muscle invasive bladder cancer involves the direct instillation of immunotherapy or chemotherapy into the bladder. While this approach limits systemic absorption, patients undergoing this localised treatment frequently report significant urological side effects, including increased frequency and urgency of urination, haematuria and dysuria. A relatively new drug used for bladder cancer is gemcitabine, which has shown an improved efficacy and toxicity profile with comparison to the first-line chemotherapy mitomycin C in patients. Elucidating the effects of gemcitabine on the normal cells and changes in the normal function of the bladder may reveal possible targets for preventing, alleviating or treating the adverse urological effects associated with this treatment.

The cytotoxic effect of gemcitabine alone and in combination with hyperthermia treatment was examined on cultured non-malignant and malignant human urothelial cells, and compared to mitomycin C. Luminal gemcitabine treatment on full thickness porcine bladder sections examined the immediate histological and functional effects on the urothelium and detrusor muscle. Finally, single and repeated intravesical instillations of gemcitabine in mice examined the changes in voiding behaviours and ex vivo bladder function. Chemical, mechanical and electrical stimuli were used to investigate and compare the responses of control and treated tissues.

The potency of gemcitabine on malignant urothelial cells was >10,000-fold greater than its potency on non-malignant cells. This effect is attributed in part to the enhanced reactive oxygen species production induced by gemcitabine, and the enhanced presence of the human equilibrative nucleoside transporters in malignant cells with comparison to non-malignant urothelial cells. Gemcitabine also induced increased release of inflammatory cytokines from cultured urothelial cells, and these effects were not potentiated by hyperthermia. Luminal gemcitabine sloughed urothelial cells from porcine tissue, resulting in decreased ATP but enhanced prostaglandin E\textsubscript{2} release from the urothelium. Repeated intravesical gemcitabine treatment with subsequent recovery periods in mice increased voiding frequency, enhanced urothelial ATP and prostaglandin E\textsubscript{2} release but depressed detrusor contractile responses mediated by efferent nerve stimulation. Taken together, these results suggest that intravesical gemcitabine induces a painful and overactive bladder phenotype in patients through a combination of enhanced urothelial and inflammatory mediators and altered efferent nerve activity, which may sensitise afferent nerves and reduce detrusor muscle contraction respectively.
DECLARATION

This thesis is submitted to Bond University in fulfilment of the requirements of the degree of Doctor of Philosophy by Research.

I declare that the research presented within this thesis is a product of my own original ideas and work, and contains no material which has previously been submitted for a degree at this university or any other institution, except where due acknowledgement has been made.

Stefanie Elizabeth Farr

3rd July 2015
ACKNOWLEDGEMENTS

I would like to thank my supervisors Professor Russ Chess-Williams and Dr Catherine McDermott for giving me the opportunity to study this PhD project. I will be forever grateful for their ongoing support, encouragement and feedback that they provided me throughout my candidature. It has been a privilege and a pleasure to be their student. They truly are a perfect team – Russ was a constant source of inspiration through the hours spent discussing wild scientific tangents, and I could always rely on Catherine to arm me with a plan.

Another thank you must go to Dr Donna Sellers, who was my supervisor during my first foray into research in my undergraduate degree. I will forever appreciate her introducing me to the world of research, something I had never considered I would find so intellectually stimulating or enjoy as much as I have over the past three years. This is also due to the rest of the Centre of Urology Research team and the other HDR students in the Bond University Faculty of Health Science and Medicine – our weekly meetings, dances in the laboratory and nerdy scientific jokes made my PhD a pleasure. A special mention must go to Kylie and Amanda, who have continually supported and inspired me both academically and personally throughout my candidature.

I’d like to especially acknowledge the following girls for their contribution to my thesis: Kelly, Sharon, Millie, Annika, Magda, Susie, Monica, Maisy, Dora, Dolly, Shelly, Carlotta, Chip, Ivy, Flick, Jaime, Lyra, Esme, Gerty, Evangeline, Claire, Peggy, Polly, Alexa, Hope, Baby, Quinn and May.

I would have never finished my PhD without the support of my family and friends, who have continually motivated me, made me laugh and listened to my lab problems whilst having no idea what I was talking about. A special mention must go to my siblings (Meg, Bella, Lachlan and Tim) and my Nana, who always helped me see the light at the end of tunnel and who are proud of me even though they still think my research is on kidneys.

Finally, I’d like to dedicate this thesis to my heroes, Mum and Dad (Ann-Maree and Andrew Farr), who have been the best cheerleaders throughout my life, but particularly during my PhD. They taught me the meaning of tenacity and hard work, encouraged me through the tough times and celebrated my every milestone. This is for you both – but I promise I’ll never make you read it!
Abstracts as a result of this thesis:

Stefanie Farr, Russ Chess-Williams, Catherine McDermott. (2014) Selective cytotoxicity of gemcitabine on superficial malignant vs. normal human urothelial cells and the effects of hyperthermia. 5\(^{th}\) National Symposium on Advances in Gastrointestinal & Urogenital Research, Gold Coast 2014

Farr, S., McDermott, C., Chess-Williams, R. (2014) Gemcitabine enhanced release of ATP from bladder urothelial cells but is selectively cytotoxic to bladder cancer cell lines. Gold Coast Health and Medical Research Conference Gold Coast 2014

Farr, S., McDermott, C., Chess-Williams, R. (2013) Administration of luminal gemcitabine and combined chemohyperthermia treatment depress contractile and relaxant responses of the bladder tissue. Gold Coast Health and Medical Research Conference Gold Coast 2013

TABLE OF CONTENTS

Abstract ... i
Declaration ... iii
Acknowledgements .. v
Publications .. vii
Table of Contents ... viii
Abbreviations .. xi

Chapter 1: General Introduction 1
 1.1 The Function of the Urinary Tract 3
 1.2 Bladder Cancer ... 30
 1.3 Gemcitabine .. 40
 1.4 Summary .. 49
 1.5 Research Questions and Hypothesis 50

Chapter 2: General Methods 53
 2.1 Assays for Urothelial Mediator Release 55
 2.2 Chemicals and Drugs 58
 2.3 Histology ... 60
 2.4 Analysis .. 62

Chapter 3: Effects of Gemcitabine on Cultured Human Urothelial Cells 65
 3.1 Introduction .. 67
 3.2 Aims .. 75
 3.3 Materials and Methods 76
 3.4 Results ... 88
 3.5 Discussion .. 112
ABBREVIATIONS

α,β-mATP: alpha, beta methylene ATP
ACh: acetylcholine
AChE: acetylcholinesterase
ADP: adenosine 5'-diphosphate
AP-1: activator protein-1
AR: adrenoceptor
ATP: adenosine 5'-triphosphate
Ca²⁺: calcium
cAMP: 3'-5'-cyclic adenosine monophosphate
CGRP: calcitonin gene-related peptide
COX: cyclooxygenase
DAG: diacylglycerol
dCK: deoxycytidine kinase
DFV: discoidal fusiform vesicle
DRG: dorsal root ganglia
EFS: electrical field stimulation
EGF: epidermal growth factor
EGFR: epidermal growth factor receptor
GAG: glycosaminoglycans
GSH: glutathione
H₂O₂: hydrogen peroxide
IL: interleukin
IP₃: inositol trisphosphate
K⁺: potassium
KCl: potassium chloride
L-NNA: L-N⁵-Nitroarginine
MIBC: muscle invasive bladder cancer
NA: noradrenaline
Na⁺: sodium
NANC: non-adrenergic, non-cholinergic
NGF: nerve growth factor
NMBPR: S-(4-nitrobemzyl)-6-thioinsine
NMIBC: non-muscle invasive bladder cancer
NO: nitric oxide
NOS: nitric oxide synthase
PGE₂: prostaglandin E₂
PLC: phospholipase C
PMC: pontine micturition centre
ROS: reactive oxygen species
RT-PCR: reverse transcription polymerase chain reaction
SEM: standard error of the mean
TCC: transitional cell carcinoma
TK2: thymidine kinase 2
TNF: tumor necrosis factor
TRP: transient receptor potential
TTX: tetrodotoxin
TUR: transurethral resection
UDIF: urothelium derived inhibitory factor
UP: uroplakin