Automating Systematic Reviews

John Rathbone

A thesis submitted in total fulfilment of the requirement of the degree of
Doctor of Philosophy (PhD)

May 2017

Centre for Research in Evidence-Based Practice
Faculty of Health Science and Medicine

Professors Paul Glasziou, Tammy Hoffmann & Associate Professor Elaine Beller

This research was supported by an Australian Government Research Training Program Scholarship.
Abstract

Background
Systematic reviews are used as the ‘gold standard’ to evaluate healthcare, education, and social policies. They are integral to the clinical decision making of healthcare professionals, and funding decisions made by governmental agencies. The rapid growth in primary research has not been matched by a growth in the efficiency of producing systematic reviews and consequently evidence-based decision making is struggling to remain feasible.

Aims
This body of research aimed to develop and evaluate strategies towards the automation of systematic reviews, so that secondary health research can be produced more efficiently and cost effectively. To that end, four research studies were developed: 1. Comparing the performance of biomedical databases to determine the sensitivity and precision for identifying systematic reviews; 2. Developing and evaluating algorithms to detect duplicate records arising from searching biomedical databases; 3. Evaluating the potential benefits from using a semi-automated machine learning predictive algorithm for citation screening; 4. Developing and evaluating strategies to expedite citation screening using title-only keyword searching.

Methods
Different methods were used to answer the research questions. For the first research study (identifying reviews), 7 biomedical databases were searched for systematic reviews of any intervention for hypertension and the performance of each database was assessed and compared for both comprehensiveness and accuracy. For the second research study (deduplication), an iterative approach was needed to develop and evaluate the performance of each algorithm to detect duplicates; the results acquired from each algorithm were used to inform the next iteration until an ideal algorithm was produced that achieved higher duplicate detection than current methods, but without compromising accuracy. For the third research study (predictive screening), 4 datasets from the literature searches of
published systematic reviews were used to evaluate an online machine learning predictive algorithm by replicating the screening decisions of the original reviews; sensitivity analyses were performed to determine if the reduction in screening effort could be further improved by including non-relevant citations that were closely matched to the review inclusion criteria. For the fourth study (expediting screening), 10 datasets from the literature searches of published systematic reviews were used to evaluate title-only screening. Datasets were screened using title-only keywords searching based upon the inclusion criteria of each systematic review. The results were compared against the published reviews for reduction in screening effort and recall of included studies.

Results
In the first study, the biomedical database, EMBASE, retrieved the largest number of relevant citations (69% sensitivity), but also was the least specific (7% specificity), retrieving many irrelevant citations. The Cochrane Library had 60% sensitivity and was the most precise (30%) of all the databases. None of the databases identified all the relevant records, but a combination of EMBASE, the Cochrane Library and Epistemonikos identified 83% of all the relevant systematic reviews.

In the second study, the iteratively developed deduplication algorithm increased duplicate detection by an average of 42% compared with duplicate detection using EndNote™ bibliographic reference management software. Additionally, all unique citations were correctly classified, whereas EndNote™ classified some unique citations wrongly as duplicate records.

In study 3, the evaluation found that the predictive screening tool (Abstrackr) reduced the screening effort in a range from 9% to 57% depending on the complexity of the systematic review. The reliability to retrieve included studies was good, with most relevant citations found, but in 2 datasets one included study was not retrieved by Abstrackr. Sensitivity analyses found that workload savings could be further increased by including closely matched non-relevant citations, and very large datasets (≥15,000 citations) could achieve as much as 80% reduction in screening.

In study 4, the interest was to reduce screening effort using title-only screening. This ranged from 11% to 78% with a median reduction in screening effort of 53%. In
9 systematic reviews the recall of included studies was 100%. In one review, 4 of 5 reviewers did not identify the same included study (median recall: 67%, total included studies n=3).

Discussion and implications
Automation tools are increasingly being developed and interest in the subject continues to grow with new automation methods and literature overviews being published. Some of the automation tools have not been fully tested and this is likely to be a barrier to implementation by systematic reviewers. Other tools show promise but have not been developed into consumer level products. As a response to these challenges, working parties have been established to overcome these barriers and establish a set of principles and goals. The findings from this body of research have shown that more efficient working practices are possible through improved duplicate detection and can be made available to the systematic review community without a prolonged research and development period. The clear potential for machine learning algorithms to automate decisions and reduce screening was demonstrated, but has not been realised into a consumer ready product, and therefore is worthy of further research and development. Biomedical databases offer different products which vary in scale and content and researchers should be prepared to search several databases rather than relying on a single database. The title-only screening developed during this research was shown to be effective and demonstrated similar reliability to both predictive screening tools and human screening, and could be used with other automation tools to assist with screening. Progress with automation tools will be accelerated once technical barriers are overcome, and by pursuing proof of concept technologies into consumer ready products and thoroughly evaluating automation tools for reliability.
Keywords

- Abstrackr
- Algorithm
- Automation
- Biomedical database
- Citation screening
- Deduplication
- Expediting Evidence Synthesis
- Machine learning
- PICO based title-only screening
- Rapid Review
- Scoping Search
- Semi-automation
- Systematic Review Assistant-Deduplication Module
- SRA
- Systematic Review
Declaration by Author

This thesis is submitted to Bond University in fulfilment of the requirements of the degree of Doctor of Philosophy. I hereby declare that this thesis contains no material which has been accepted for the award of any other degree or diploma at any university or equivalent institution and that, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference is made in the text of the thesis.

This thesis includes three original papers published in peer reviewed journals and one in press publication. The core theme of the thesis is developing and investigating methods to increase the efficiency of producing evidence-based medicine research, specifically systematic reviews. The publications and thesis represents my own original work under the supervision of Paul Glasziou, Tammy Hoffmann and Elaine Beller. The inclusion of co-authors is demonstrative of input between multidisciplinary researchers and acknowledges collaboration with team-based research methods.

John Rathbone 31/08/2017
Research outputs

Peer-reviewed publications:

Published and Presented Conference Abstracts

Declaration of authors contribution

<table>
<thead>
<tr>
<th>Publications co-authored</th>
<th>Statement of contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rathbone, J., M. Carter, T. Hoffmann, P. Glasziou (2016). A comparison of the performance of seven key bibliographic databases in identifying all relevant systematic reviews of interventions for hypertension. Syst Rev 5(27)</td>
<td>JR (80%), MC (10%), TH (5%), PG (5%)</td>
</tr>
<tr>
<td>John Rathbone, Loai Albarqouni, Mina Bakhit, Elaine Beller, Oyungerel Byambasuren, Tammy Hoffmann, Anna Mae Scott, Paul Glasziou (in Press). Expediting citation screening using PICO based title-only screening for identifying studies in Rapid Reviews</td>
<td>JR (74%), LA (5%), MB (5%), EB (2%), OB (5%), TH (2%), AMS (5%), PG (2%)</td>
</tr>
</tbody>
</table>
Copyright declaration

All material published in this thesis is distributed according to Rathbone et al.; licensee BioMed Central. 2014. This article is published under license to BioMed Central Ltd. These are Open Access articles distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original works are properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in these articles, unless otherwise stated.
Acknowledgements

I would like to express my gratitude to my supervisors Paul Glasziou, Tammy Hoffmann, and Elaine Beller for their continuous support and guidance during my PhD and for providing such an enjoyable academic study environment.

I would also like to thank my colleagues at the Centre for Evidenced-Based Practice (CREBP), Bond University for their support and collegiality, and for making the research environment so informal and engaging. Special thanks to Matt Carter whom I collaborated with during my research. In addition, I wish to acknowledge with thanks the Australia Fellowship grant from the National Health and Medical Research Council, and the academic support from the school of Health Sciences and Medicine, Bond University.

My thanks to the external examiners - Hans Lund, Iain Marshall and Karen Robinson, for giving-up so freely their precious time, and for their thoughtful consideration of the thesis.

And to my wife, Evelyne, for the ongoing support and planting the idea that led to uprooting to the antipodes and embarking upon a PhD programme.
Table of Contents

Abstract .. iii

Keywords ... vii

Declaration by Author .. ix

Research outputs .. xi

Declaration of authors contribution ... xiii

Copyright declaration ... xv

Acknowledgements ... xvii

List of Tables ... xxiii

List of Figures ... xxv

List of Abbreviations .. xxvii

Chapter 1 Introduction .. 1

1.1 History and development of systematic review .. 3

1.2 Advantages of systematic reviews .. 3

1.3 Research growth ... 5

1.4 Updating systematic reviews ... 7

1.5 Current automation tools applied to systematic reviewing ... 8

1.6 Summary ... 10

Chapter 2 Research proposal... 13

2.1 A comparison of the performance of seven key bibliographic databases in identifying all relevant systematic reviews of interventions for hypertension ... 15
2.2 Better duplicate detection for systematic reviewers: evaluation of systematic Review
Assistant-Deduplication Module .. 16

2.3 Faster title and abstract screening? Evaluating Abstrackr, a semi-automated online screening program for systematic reviewers .. 17

2.4 PiCo based title-only screening to expedite reviewing .. 18

Chapter 3 Biomedical database coverage .. 19

3.1 A comparison of the performance of seven key bibliographic databases in identifying all relevant systematic reviews of interventions for hypertension ... 21

Abstract .. 22
Introduction .. 24
Methods ... 24
Results .. 28
Discussion .. 31
Conclusions ... 32
References ... 35

Chapter 4 Duplicate detection within bibliographic records .. 37

4.1 Better duplicate detection for systematic reviewers: evaluation of Systematic Review
Assistant-Deduplication Module .. 41
Abstract .. 42
Background ... 43
Methods ... 44
Results .. 49
Discussion .. 53
Conclusions .. 55

References.. 57

Chapter 5 Semi-automated citation screening ... 61

5.1 Faster title and abstract screening? Evaluating Abstrackr, a semi-automated online screening program for systematic reviewers .. 63

Abstract ... 64

Background ... 65

Methods ... 66

Results ... 68

Discussion ... 72

Conclusions ... 76

References.. 78

Chapter 6 Screening citations using PICo based title-only screening ... 83

6.1 ... 85

Abstract ... 85

Introduction ... 87

Methods ... 88

Results .. 90

Discussion ... 92

Conclusion ... 94

References.. 98

Chapter 7 ... 101
List of Tables

Chapter 3 Biomedical database coverage

Table 1: Performance of bibliographic databases identifying relevant systematic reviews of interventions for treating hypertension..28

Table 2: Performance of bibliographic databases identifying relevant systematic reviews of interventions for treating hypertension (excluding non-conventional treatments)...30

Chapter 4 Duplicate detection within bibliographic records

Table 1: SRA-DM algorithm changes..45

Table 2: Databases searched for retrieval of citations for validation testing46

Table 3: Sensitivity† and specificity‡ of SRA-DM prototype algorithms and EndNote auto-deduplication (in a dataset of 1,988 citations, including 799 duplicates)..50

Table 4: Sensitivity† and specificity‡ of SRA-DM and EndNote auto-deduplication (validation testing)...52
List of Figures

Chapter 1 Introduction
Figure 1: Key steps for conducting a systematic review and where studies for this PhD are focussed ... 2
Figure 2: The estimated number of published trials from 1950 to 2010 6
Figure 3: The estimated number of systematic reviews published from 1990 to 2014 ... 6
Figure 4 Percentage of all systematic reviews produced by Cochrane and other producers (total = 18,420; 2010-2015) .. 8

Chapter 3 Biomedical database coverage
Figure 1: Search strategies ... 26
Figure 2: Proportion of reference set (n = 400) retrieved by searching EMBASE and the Cochrane library, resulting in the identification of 88% (n = 352) of total reviews ... 29
Figure 3: Proportion of reference set (n = 400) retrieved by searching Cochrane, Epistemonikos and MEDLINE, resulting in the identification of 83% (n = 330) of total reviews ... 29

Chapter 5 Semi-automated citation screening
Figure 1: Percentage of citations predicted by Abstrackr that were relevant for further full text inspection. *Raw numbers of the proportion of citations selected for inspection ... 68
Figure 2: False negative rate. *Raw numbers of the proportion of citations incorrectly predicted by Abstrackr to be irrelevant for further inspection .. 69
Figure 3: Percentage of studies missed by Abstrackr—but were included in the reviews. Raw numbers of the proportion of citations missed (predicted not relevant) ... 69
Chapter 6 Screening citations using PICo based title-only screening

Figure 1: Summary of the median reduction in screening effort90
Figure 2: Summary of the individual reviewer reduction in screening effort using PICo based title-only screening and Intervention and Comparator based title-only screening...91
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>aHUS</td>
<td>Atypical Haemolytic Uraemic Syndrome</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>CDSR</td>
<td>Cochrane Database of Systematic Reviews</td>
</tr>
<tr>
<td>CENTRAL</td>
<td>Cochrane Central Register of Controlled Trials</td>
</tr>
<tr>
<td>CINAHL</td>
<td>Cumulative Index to Nursing and Allied Health Literature</td>
</tr>
<tr>
<td>CONSORT</td>
<td>Consolidated Standards of Reporting Trials</td>
</tr>
<tr>
<td>CREBP</td>
<td>Centre for Research in Evidence based Practice</td>
</tr>
<tr>
<td>DARE</td>
<td>Database of Abstracts of Reviews of Effects</td>
</tr>
<tr>
<td>DICOM</td>
<td>Digital Imaging and Communications in Medicine</td>
</tr>
<tr>
<td>ECHO</td>
<td>Echocardiography</td>
</tr>
<tr>
<td>EMBASE</td>
<td>Excerpta Medica Database</td>
</tr>
<tr>
<td>EBM</td>
<td>Evidence Based Medicine</td>
</tr>
<tr>
<td>FN</td>
<td>False Negative</td>
</tr>
<tr>
<td>FP</td>
<td>False Positive</td>
</tr>
<tr>
<td>HTA</td>
<td>Health Technology Appraisal</td>
</tr>
<tr>
<td>IBM</td>
<td>International Business Machines Corporation</td>
</tr>
<tr>
<td>ICASR</td>
<td>International Collaboration for the Automation of Systematic Reviews</td>
</tr>
<tr>
<td>LILACS</td>
<td>Latin American and Caribbean Health Sciences Literature</td>
</tr>
<tr>
<td>MEDLINE</td>
<td>Medical Literature Analysis and Retrieval System Online</td>
</tr>
<tr>
<td>MeSH</td>
<td>Medical Subject Headings</td>
</tr>
</tbody>
</table>
PICO - Participants, Interventions, Comparators, Outcomes

PICo - Participants, Interventions, Comparators, outcomes

PICOS - Participants, Interventions, Comparators, Outcomes, Study design

PRISMA - Preferred Reporting Items for Systematic Reviews and Meta-Analysis

RSE – Reduction in Screening Effort

SE – Screening Effort

SRA-DM – Systematic Review Assistant – Deduplication algorithm

TN – True Negative

TRIP - Turning Research Into Practice
“In 18th century England, James Hargreaves [an illiterate weaver] invented the Spinning Jenny, and Richard Arkwright [wig maker & inventor] pioneered the water-propelled spinning frame which led to the mass production [automation] of cotton. This was truly revolutionary. The cotton manufacturers created a whole new class of people - the urban proletariat. The structure of society itself would never be the same.”

A. N. Wilson on Society