PhD Thesis
by
Kylie Alexandra Mills

Cyclophosphamide and ifosfamide: mechanisms of cytotoxic action and consequences for normal bladder function

Submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy by Research

March 2015
Abstract

This thesis investigates the urotoxic effects of the commonly used cytotoxic drugs cyclophosphamide and ifosfamide. Both drugs are well recognised for causing haemorrhagic cystitis and lasting adverse effects in the bladder including pain, increased urinary frequency and urgency and sensations of incomplete bladder emptying. These adverse effects have been largely attributed to the formation of the toxic metabolite acrolein which is excreted in the urine. However, another urinary metabolite of these drugs is chloroacetaldehyde and its role in urotoxicity has not been explored. Understanding more about what effects these drugs and their metabolites have on the bladder and its function may uncover possible targets for preventing, alleviating or treating the adverse urological effects and could lead to better drug toleration and better treatment outcomes.

The effects of acrolein and chloroacetaldehyde were investigated using cultured human urothelial cells as well as full thickness porcine bladder sections. Systemic administration of cyclophosphamide and ifosfamide was also performed in mice to study the effects of the endogenously produced metabolites on whole bladder and nerve function. A combination of pharmacological agents and chemical, mechanical and electrical stimuli were used to investigate and compare the responses of control and treated tissues.

Experiments measuring mediator release from urothelial cells implicated both acrolein and chloroacetaldehyde in the urotoxicity of cyclophosphamide and ifosfamide as both metabolites caused increased excitatory transmitter release from the cells. It was thought that the increase in excitatory transmitter release may contribute to bladder hyperactivity by activating and/or sensitising afferent nerves. Both metabolites also caused urothelial damage when applied to the luminal side of porcine bladder sections. However, despite loss of urothelial cells, the mediator release was comparable to controls suggesting enhanced release from each cell compensated for overall cell loss. Total afferent nerve activity was found to be increased in mice after treatment with either cyclophosphamide or ifosfamide due to enhanced activity of the low threshold nerve fibres. However, the heightened afferent activity observed in mice was not associated with increased excitatory urothelial mediator release or altered detrusor tone. This suggests that cyclophosphamide or ifosfamide treatment is able to enhance nerve activity via a mechanism independent of bladder function and that the bladder pain and urinary hyperactivity experienced by patients is primarily due to sensitisation of the afferent pathways.
Declaration

This thesis is submitted to Bond University in fulfilment of the requirements of the degree of
Doctor of Philosophy by Research

This research represents my own original work towards this research degree and contains no
material which has been previously submitted for a degree or diploma at this university or any
other institution, except where due acknowledgment has been made.

K Mills

Kylie Mills

2 March 2015
Acknowledgements

I would like to thank my supervisors Professor Russ Chess-Williams and Dr Catherine McDermott for the opportunity to undertake this PhD and for their ongoing support and guidance during every stage of this project. I am extremely grateful to both of them for their enthusiasm about my research, their encouragement and help in developing my scientific skills. It has been a pleasure working with them and I count myself lucky to have gone through this process with such wonderful mentors.

I would not have been able to undertake this project without the support of Bond University and the Faculty of Health Sciences & Medicine and I thank all the people who have helped me get to where I am today. A special mention goes to the students and staff who make up the Centre for Urology Research. Our weekly meetings helped to keep me motivated and provided the opportunity for open discussion which has been a huge help to me. In particular, I must thank my fellow HDR students who have shared so much time in the lab and the office with me over the last few years. Thank you so much for listening, for your valuable advice and discussion and for making the experience so enjoyable.

Of course, a big thank you must also go to my family and friends who encourage and inspire me, make me laugh and keep the smile on my face. A particular thank you to my Mum and Dad for teaching me to pursue my goals and the perseverance to get there and to my sister Samantha for her calming influence and ability to make the big picture clear. I want to express a special thank you to my husband Matthew who not only convinced me to undertake a PhD but helped me celebrate every milestone, got me through the tough times, patiently listened to my practice presentations and has encouraged me every day.
Publications

Abstracts as a result of this thesis

Mills, K., Chess-Williams, R., McDermott, C. (2013) Chloroacetaldehyde, not just acrolein, may be involved in the uro-toxicity of cyclophosphamide and ifosfamide. Gold Coast Health and Medical Research Conference Gold Coast 2013

Kylie A Mills, Russ Chess-Williams, Catherine McDermott. (2013) The protective effect of N-acetylcysteine and Vitamin C on acrolein toxicity in human urothelial cells. 5th National Symposium on Advances in Gastrointestinal & Urogenital Research, Melbourne 2013

Table of Contents

Abstract ... i
Declaration ... ii
Acknowledgements ... iii
Publications .. iv
Table of Contents ... v
Abbreviations ... vii

CHAPTER 1: Introduction ... 1
 1.1 Rationale ... 3
 1.2 Significance ... 4
 1.3 Bladder .. 5
 1.4 Cyclophosphamide and Ifosfamide .. 36
 1.5 Aims .. 50

CHAPTER 2: Materials and Methods ... 51
 2.1 Solutions .. 53
 2.2 Drugs ... 53
 2.3 Assays .. 55
 2.4 Histology ... 58
 2.5 Statistical analysis .. 60

CHAPTER 3: Effects of Cyclophosphamide, Ifosfamide, Acrolein or Chloroacetaldehyde on Cultured Human Urothelial Cells ... 61
 3.1 Introduction ... 63
 3.2 Methods .. 69
 3.3 Results ... 77
 3.4 Discussion ... 106

CHAPTER 4: Effects of Acrolein or Chloroacetaldehyde on the Function of Isolated Porcine Bladder ... 117
 4.1 Introduction ... 119
4.2 Methods .. 123
4.3 Results ... 127
4.4 Discussion ... 141

CHAPTER 5: Effects of Systemic Cyclophosphamide or Ifosfamide on Bladder Sensory Nerve Activity in Mice ... 149
 5.1 Introduction .. 151
 5.2 Methods .. 155
 5.3 Results ... 171
 5.4 Discussion ... 191

CHAPTER 6: Effects of Systemic Cyclophosphamide or Ifosfamide Treatment on Isolated Whole Bladder Function in Mice ... 205
 6.1 Introduction .. 207
 6.2 Methods .. 211
 6.3 Results ... 216
 6.4 Discussion ... 231

CHAPTER 7: General Discussion .. 239

REFERENCES: ... 253
Abbreviations

ACh: acetylcholine
ACHE: acetylcholinesterase
ADP: adenosine 5'-diphosphate
AP-1: activator protein-1
AR: adrenoceptor
ASIC: acid sensing ion channel
ATP: adenosine 5'-triphosphate
Ca²⁺: calcium
CAA: chloroacetaldehyde
cAMP: 3'-5'-cyclic adenosine monophosphate
cGMP: 3',5'-cyclic guanosine monophosphate
CGRP: calcitonin gene-related peptide
COX: cyclooxygenase
CPO: cyclophosphamide
CYP: cytochrome P450
DAG: diacylglycerol
Deg: degenerin Na⁺ channels
DRG: dorsal root ganglia
EFS: electrical field stimulation
EGF: epidermal growth factor
EGFR: epidermal growth factor receptor
ENaC: epithelial sodium channel
EUS: external urethral sphincter
GAG: glycosaminoglycans
GSH: glutathione
H₂O₂: hydrogen peroxide
i.v.: intravenously
IC: interstitial cells
IC-IM: interstitial cells – intramuscular
IC-LP: interstitial cells – lamina propria
IFO: ifosfamide
IL: interleukin
IP3: inositol trisphosphate
IUS: internal urethral sphincter

K⁺: potassium
KCl: potassium chloride
LDH: lactate dehydrogenase
LP: lamina Propria
NA: noradrenaline
Na⁺: sodium
NAC: N-acetylcysteine
NAD: nicotinamide-adenine dinucleotide
NANC: non-adrenergic, non-cholinergic
NF-κB: nuclear factor-kappaB
NGF: nerve growth factor
NO: nitric oxide
NOS: nitric oxide synthase
ONOO⁻: peroxynitrite
p.o.: per oral
PACAP: pituitary adenylate cyclase activating peptide
PAG: periaqueductal gray
PARP: poly ADP-ribose polymerase
PBS: painful bladder syndrome
PGE₂: prostaglandin E2
PLC: phospholipase C
PMC: pontine micturation centre
RNS: reactive nitrogen species
ROS: reactive oxygen species
RT-PCR: reverse transcription polymerase chain reaction
SEM: standard error of the mean
TNF: tumor necrosis factor
Trks: tyrosine kinase receptors
TRP: transient receptor potential
TTX: tetrodotoxin
UDIF: urothelium derived inhibitory factor
UDP: uridine 5'-diphosphate
UTP: uridine 5'-triphosphate