Effects of Valence and Arousal on the Allocation of Attention to
Motivationally Significant Stimuli

James C. Champion
BSocSc(Psych) (Hons I), MPsyh(Clin), PhD(Candidate), MAPS, MCCLP

Submitted in total fulfilment of the requirements of the degree of
Doctor of Philosophy

School of Psychology
Faculty of Society & Design
Bond University

22 December 2016
ABSTRACT

Innate attentional mechanisms that prioritise the processing of potential threats and opportunities for satisfying basic primordial needs serve a highly adaptive function for an individual and the species. Existing research has revealed preferential spatial attention for threatening stimuli, including: (i) facilitated attentional engagement, (ii) delayed disengagement, and (iii) attentional avoidance. Theoretical models that have attempted to explain these phenomena are predicated on the assumption that a threat detection mechanism operates automatically to facilitate preferential processing of threatening information. According to motivational accounts of emotional processing, however, an adaptive attentional system should also prioritise high arousing, appetitive stimuli that are symbolic of our evolutionary needs. Although relatively unexplored, there is evidence to suggest that appetitive stimuli may also preferentially capture attention, with recent studies suggesting that stimulus arousal determines the allocation of cognitive resources, independent of valence.

To disentangle the effects of valence and arousal on visual attention, a novel set of motivationally significant pictures was developed. The pictures were validated in Study 1 using physiological indices of the orienting response, a precursory mechanism to attentional processing. Skin conductance responses (SCRs) and heart rate were measured while nonselect participants passively viewed threatening, appetitive, and neutral pictures that varied in arousal. Verbal ratings of valence, arousal, and interest were obtained following the viewing task. Irrespective of valence, SCRs and cardiac deceleration were greatest for high arousing pictures (blood injuries and heterosexual erotica) relative to low arousing pictures (human aggression and nurturance of offspring), suggesting that orienting is augmented on the basis of stimulus arousal. The physiological indices were found to share a strong
association with verbal ratings of arousal, even after controlling for subjective interest. Arguing against threat-superiority theories, orienting responses did not vary as a function of valence.

The picture stimuli were subsequently employed in a series of spatial cueing experiments designed to examine the individual and interactive effects of stimulus valence and arousal on the distinct components of spatial attention. Pictures preceded probes that appeared in either cued (valid trials) or non-cued locations (invalid trials) to capture the effects of valence and arousal on attentional engagement and disengagement, respectively. The exposure duration of the pictures varied between 24 ms and 1000 ms in order to clarify the time-course of these effects. All experiments were conducted using nonselect samples, and individual differences in state and trait anxiety were statistically controlled.

In Study 2, latencies for responding to the probe’s location indexed the allocation of spatial attention. Reaction times were slower on valid trials, indicative of inhibition of return. Even when the cues predicted the location of the probe on 75% of trials (Experiment 2.2), and the exposure duration of the cues was reduced to ≤ 100 ms (Experiment 2.3), valid cues failed to prompt faster responses. Contrary to predictions that high arousing pictures would facilitate attention to the probes on valid trials relative to neutral pictures, results indicated inhibited engagement of these stimuli between 100-1000 ms post-stimulus onset (Experiments 2.1 & 2.2). Although these findings suggest that attention avoided the high arousing cues, the same pictures produced slower responses on invalid trials, indicative of delayed disengagement, as did the less arousing, threatening pictures. These discordant findings were explained in terms of distinct effects of stimulus arousal on perception and attentional shifting. On valid trials, perception of the cues may have interfered
with detection of the probes due to the overlapping configuration of the stimuli, thereby masking facilitated engagement effects. Perceptual competition is less likely to have occurred when the cues and probes were spatially distinct on invalid trials, supporting interpretations that attention was slower to disengage the high arousing pictures. A second series of spatial cueing studies was conducted to test this interpretation.

In Study 3, a more demanding probe classification task was employed and the spatial configuration of the cues relative to the probes was amended to eliminate spatial overlap. Following these methodological changes, a robust cue validity effect was observed, characterised by faster responding on valid trials. In support of threat-superiority theories, facilitated engagement of high arousing, threatening pictures was observed at 24 ms post-stimulus onset (Experiment 3.1). Although a general slowing effect of stimulus arousal on the speed of responding was observed irrespective of exposure duration, there was no evidence that attentional disengagement was influenced by the affective qualities of the pictures. Delayed disengagement effects were absent even when the cues accurately predicted the location of probe on 75% of trials (Experiment 3.2), and the exposure duration of the cues was increased to 100-400 ms (Experiment 3.3). In contrast to the comparatively simple localisation task employed in Study 2, classification of the probes is assumed to have placed greater demands on top-down, attentional control that attenuated the effects of arousal on attentional shifting. The deleterious effects of high stimulus arousal on non-spatial components of attention (i.e., processing speed and capacity), however, appear to be more resistant to attentional control, as demonstrated by a general effect of stimulus arousal. Because arousal-driven interference was observed in the absence of delayed disengagement, these appear to be dissociable effects,
supporting conclusions that stimulus arousal influences both spatial and non-spatial aspects of visual attention, depending on contextual demands.

The results of Study 2 and 3 were interpreted with respect to existing models of attention to emotional stimuli. An integrated model is proposed that accounts for the effects of both valence and arousal on the allocation of attention according to the findings of the current research and existing literature. Limitations of the research are also discussed and directions for future studies are suggested.

Keywords: emotion, visual attention, spatial cueing, motivational significance, valence, arousal, threat
DECLARATION OF ORIGINALITY

This thesis is submitted to Bond University in fulfilment of the requirements of the degree of Doctor of Philosophy (PhD). This thesis represents my own original work towards this research degree and contains no material which has been previously submitted for a degree or diploma at this University or any other institution, except where due acknowledgement is made. All raw data and analyses have been retained and are available upon request. I certify that I have made and retained a copy of this document.

Name: James C. Champion

Signature: [Signature]

Date: 22 December 2016
RESEARCH OUTPUTS & PUBLICATIONS

Journal Publications

Conference Proceedings

ETHICS DECLARATION

The research reported in this thesis received ethics approval from the Bond University Human Research Ethics Committee (BUHREC). Ethics application number RO1607.
ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincerest appreciation to my Academic Supervisor, Dr Mark Edwards, for his guidance, insight, and unwavering support. Thank-you for guiding me through the high and lows of this journey. You have pushed me to grow beyond what I thought possible. I am truly grateful to have had such a great mentor. I am also indebted to my Associate Supervisor, Dr Michael Lyvers, for his invaluable input and recommendations on earlier drafts of the thesis.

I am tremendously appreciative of the support from the Faculty of Society & Design (Bond University). In particular, I would like to make special mention of Mandei Saranah, Joel Mason, and Diane Hughes for their unwavering assistance throughout my PhD.

A special thank-you also to my colleagues, Harry, Michael, Liz, Amy, and the team at Living Well Psychology. Your words of encouragement have helped see me to the end of this journey.

To my partner, Ashley, I cannot express enough how much your unconditional love has meant to me. Thank-you for always believing in me, even in times when I doubted myself. You truly are my greatest source of inspiration.

To my best friend Ryan, our philosophical conversations have challenged my perceptions of existence, consciousness, and indeed myself. Your friendship has been one of my life’s greatest privileges. If our existence truly is a flat circle, I am glad we are stuck in this time loop together.
Finally, to my parents, thank-you for instilling the values that I hold and aspire to today and for always having faith in me. My accomplishments are a product of your love and support.

This research was supported by an Australian Postgraduate Award (APA) for which I am also grateful.
TABLE OF CONTENTS

Abstract...i
Declaration of Originality ..v
Research Outputs & Publications ..vi
Ethics Declaration..vii
Acknowledgements...viii
Table of Contents...x
List of Tables ...xvii
List of Figures ..xix
Table of Appendices ...xxiii
List of Abbreviations ...xxiv
PREFACE...1
CHAPTER I
Introduction...4

CHAPTER II
Theoretical Perspectives ...9
 Information Processing Model (Beck & Clark, 1997; Clark & Beck, 2010).................................9
 Two-Stage Model (Williams, Watts, MacLeod & Mathews, 1988, 1997)...............................11
 Cognitive-Motivational Model (Mogg & Bradley, 1998)...12
 Cognitive Model of Selective Processing (Mathews & Mackintosh, 1998)...............................14
 Evolved Fear Module (Öhman, 1996; Öhman & Mineka, 2001)..16
 Dual-Route Model (LeDoux, 1996)...18
 Motivational Model of Emotion (Lang et al., 1997, 1998)...21
 Chapter Summary...24
CHAPTER III

Empirical Evidence ... 27

Visual Search Task ... 27

Summary ... 31

Emotional Stroop Task ... 32

Summary ... 35

Dot-Probe Task ... 36

Summary ... 40

Spatial Cueing Task .. 41

Summary ... 48

General Limitations & Aims of the Thesis .. 49

CHAPTER IV

Study 1 .. 53

Skin Conductance .. 56

Heart Rate .. 57

Method .. 64

Participants ... 64

Materials ... 64

Picture stimuli ... 64

Experimental hardware & software. .. 66

Physiological measures. ... 67

Passive viewing task. ... 67

Picture rating task. ... 68

Procedure ... 69

Results .. 70
Data Reduction ... 70
Verbal Ratings ... 73
Hedonic valence ... 73
Arousal ... 74
Interest ... 75
Physiological Measures ... 75
Skin conductance .. 75
Cardiac responses ... 77
Picture Analysis ... 79
Discussion ... 84
Chapter Summary ... 91

CHAPTER V
Study 2 .. 92
General Methodology ... 98
Participants .. 98
Materials ... 98
State-Trait Anxiety Inventory ... 98
Picture stimuli ... 100
Spatial cueing task ... 107
Picture rating task ... 111
Experimental hardware & software .. 111
Procedure .. 112
Design .. 113
Data Preparation & Analysis .. 113
Data reduction .. 113
Planned analyses. ... 114

Experiment 2.1 .. 116
Method .. 120
Participants ... 120
Materials & Procedure ... 120
Results ... 121
Data Preparation .. 121
Statistical Assumptions ... 121
Catch Trials ... 122
Accuracy Data .. 123
Reaction Time Data .. 123
Discussion .. 136

Experiment 2.2 .. 143
Method .. 144
Participants ... 144
Materials & Procedure ... 145
Results ... 145
Data Preparation .. 145
Statistical Assumptions ... 146
Catch Trials ... 146
Accuracy Data .. 147
Reaction Time Data .. 147
Discussion .. 154

Experiment 2.3 .. 162
Method .. 164
Catch Trials ... 198
Accuracy Data .. 198
Reaction Time Data .. 198
Discussion .. 208
Experiment 3.2 ... 213
Method .. 215
Participants ... 215
Materials & Procedure .. 216
Results ... 216
Data Preparation ... 216
Statistical Assumptions ... 216
Catch Trials ... 217
Accuracy Data .. 217
Reaction Time Data .. 217
Discussion .. 220
Experiment 3.3 ... 223
Method .. 224
Participants ... 224
Materials & Procedure .. 225
Results ... 225
Data Preparation ... 225
Statistical Assumptions ... 225
Catch Trials ... 226
Accuracy Data .. 226
Reaction Time Data .. 226
Discussion ... 229
Chapter Summary .. 232

CHAPTER VII

General Discussion ... 237

Threat-Superiority Hypothesis .. 240
Facilitated Engagement ... 240
Delayed Disengagement ... 243
Attentional Avoidance ... 244

Arousal Hypothesis ... 246
Facilitated Engagement ... 246
Delayed Disengagement ... 247
Attentional Avoidance ... 248

Non-Spatial Aspects of Visual Attention ... 248

Integrated Model of Attention to Motivationally Significant Stimuli 250

Limitations and Directions for Future Research ... 255

Summary and Conclusions ... 257

References ... 260
LIST OF TABLES

Table 4.1 Means (Standard Deviations) of Verbal Ratings and Physiological Responses for Each Stimulus Type 72

Table 4.2 Bivariate Correlations between the Mean Verbal Ratings and Physiological Indices Obtained by the Pictures 80

Table 4.3 Hierarchical Multiple Regression Analysis Predicting Skin Conductance Responses from Interest, Arousal and Pleasure 82

Table 4.4 Hierarchical Multiple Regression Analysis Predicting Sustained Changes in Heart Rate from Ratings of Interest, Arousal and Pleasure 84

Table 5.1 Variations in Parameters for the Spatial Cueing Task Administered in Study 2 ... 97

Table 5.2 Means and Standard Deviations for Affective Characteristics and Low-Level Perpetual Features of the Different Stimulus Categories .. 102

Table 5.3 Mean Response Times (ms), Standard Deviations (SD), and Cue Validity Indices (CVI) as a Function of Cue Type, Validity and Exposure Duration in Experiment 2.1 ... 125

Table 5.4 Mean Response Times (ms), Standard Deviations (SD), and Cue Validity Indices (CVI) as a Function of Cue Type, Validity and Exposure Duration in Experiment 2.2 ... 148

Table 5.5 Mean Response Times (ms), Standard Deviations (SD), and Cue Validity Indices (CVI) as a Function of Cue Type, Validity and Exposure Duration in Experiment 2.3 ... 168
Table 6.1 Variations in Parameters for the Spatial Cueing Task Administered in Study 3.................................188

Table 6.2 Mean Response Times (ms), Standard Deviations (SD), and Cue Validity Indices (CVI) as a Function of Cue Type, Validity and Exposure Duration in Experiment 3.1.................................199

Table 6.3 Mean Response Times (ms), Standard Deviations (SD), and Cue Validity Indices (CVI) as a Function of Cue Type, Validity and Exposure Duration in Experiment 3.2.................................218

Table 6.4 Mean Response Times (ms), Standard Deviations (SD), and Cue Validity Indices (CVI) as a Function of Cue Type, Validity and Exposure Duration in Experiment 3.3.................................227
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.1</td>
<td>Information processing model (Beck & Clark, 1997; Clark & Beck, 2010).</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Two-stage model (Williams et al., 1988, 1997).</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>The cognitive-motivational model (Mogg & Bradley, 1998).</td>
<td>13</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Cognitive model of selective processing (Mathews & Mackintosh, 1998).</td>
<td>15</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Evolved fear module (Öhman & Mineka, 1996, 2001).</td>
<td>17</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Direct and indirect pathways for processing threatening visual stimuli (LeDoux, 1996).</td>
<td>18</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Circumplex model of emotion (Russell, 2003).</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>The motivational model of emotion (Bradley, 2009).</td>
<td>23</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Sample pictures from the low-arousing threatening, high-arousing threatening, neutral, low-arousing appetitive, and high-arousing appetitive stimulus categories.</td>
<td>66</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Verbal ratings of pleasure, arousal, and interest for the affective picture categories.</td>
<td>74</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Untransformed skin conductance responses (µS) for the affective and neutral picture types.</td>
<td>77</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Mean changes in heart rate relative to pre-stimulus baseline elicited by each stimulus type across the 6 s viewing period.</td>
<td>78</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Bivariate scatterplot depicting the linear association between mean arousal ratings and skin conductance responses obtained by the pictures.</td>
<td>80</td>
</tr>
</tbody>
</table>
Figure 4.6 Bivariate scatterplot depicting the quadratic association between mean pleasure ratings and skin conductance responses obtained by the pictures. ... 81

Figure 5.1 Scatter plot of the mean pleasure and arousal ratings obtained by each picture used for test trials on the spatial cueing task. 101

Figure 5.2 Verbal ratings of pleasure and arousal for affective pictures (N = 240). .. 106

Figure 5.3 An example of a valid trial on the spatial cueing task in Study 2. 109

Figure 5.4 Cue validity indices as a function of cue arousal and exposure duration (Experiment 2.1). ... 127

Figure 5.5 Attentional engagement and disengagement indices as a function of cue arousal and exposure duration (Experiment 2.1). 130

Figure 5.6 Cue validity indices as a function of valence and arousal, averaged over exposure duration (Experiment 2.1) 134

Figure 5.7 Attentional engagement and disengagement indices as a function of cue valence and arousal, averaged over exposure duration (Experiment 2.1) .. 136

Figure 5.8 Reaction times (ms) for probes preceded by low and high arousing cues as a function of exposure condition (Experiment 2.2) .. 150

Figure 5.9 Cue validity indices as a function of valence and arousal, averaged over exposure conditions (Experiment 2.2) 152

Figure 5.10 Attentional engagement and disengagement indices as a function of cue valence and arousal, averaged over exposure duration (Experiment 2.2) .. 154
Figure 5.11 Cue validity indices in the 100 ms exposure condition as a function of cue valence and arousal (Experiment 2.3) 171

Figure 5.12 Attentional engagement and disengagement indices as a function of cue valence and arousal in the 100 ms exposure condition (Experiment 2.3). .. 173

Figure 6.1 An example of a valid trial on the spatial cueing task in Study 3. .. 190

Figure 6.2 Cue validity indices in the 24 ms exposure condition as a function of cue valence and arousal (Experiment 3.1) 202

Figure 6.3 Indices of attentional engagement and disengagement as a function of valence and arousal in the 24 ms exposure condition (Experiment 3.1). .. 204

Figure 6.4 Cue validity indices in the 59 ms exposure condition as a function of cue arousal (Experiment 3.1) 205

Figure 6.5 Indices of attentional engagement and disengagement for the low and high arousing cues in the 59 ms exposure condition (Experiment 3.1). .. 206

Figure 6.6 Mean RTs as a function of valence and arousal in the 100 ms exposure condition (Experiment 3.1) .. 208

Figure 6.7 Mean reaction times as a function of cue validity and exposure duration (Experiment 3.2). ... 220

Figure 6.8 Mean reaction times as a function of cue validity and exposure duration (Experiment 3.3). ... 229

Figure 7.1 Proposed integrated model of attention to motivationally significant stimuli ... 251
Figure F1 Display layout for the spatial cueing task in Study 2..........................325
Figure F2 Display layout for the spatial cueing task in Study 3..........................326
TABLE OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Explanatory Statement</td>
<td>314</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Participant Consent Form</td>
<td>315</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Researcher-Constructed Demographics Questionnaire</td>
<td>316</td>
</tr>
<tr>
<td>Appendix D</td>
<td>State-Trait Anxiety Inventory (Spielberger et al., 1983)</td>
<td>317</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Picture Stimuli</td>
<td>319</td>
</tr>
<tr>
<td>Appendix F</td>
<td>Display Layout for the Spatial Cueing Task</td>
<td>325</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

ADM……….Affective decision mechanism
ANOVA…….Analysis of variance
ANCOVA……Analysis of covariance
CPU…………Central processing unit
CRT………….Cathode ray tube
CVI………….Cue validity index
ERP………….Event-related potential
GES…………Goal engagement system
HAA………….High arousing appetitive
HAT………….High arousing threatening
HR………….Heart rate
Hz…………Hertz
IAPS………….International Affective Picture System
IoR………….Inhibition of return
LAA………….Low arousing appetitive
LAT………….Low arousing threatening
M…………..Mean
ms………….Milliseconds
OR………….Orienting response
PRT………….Picture rating task
RAM………….Resource allocation mechanism
RT…………..Reaction time
SAM…………Self-Assessment-Manikin
SCR………….Skin conductance response
SCT…………Spatial cueing task

SD…………Standard deviation

SOA…………Stimulus onset asynchrony

STAI-S……..State Anxiety Scale of the State-Trait Anxiety Inventory

STAI-T……..Trait Anxiety Scale of the State-Trait Anxiety Inventory

TES…………Threat evaluation system

VES…………Valence evaluation system