Modulation of sensory and pain perception with successive non-invasive brain stimulation

Brookes Gregory Folmli

A thesis submitted in total fulfillment of the requirements for the degree of

Master of Science by Research (Health Sciences).

November 2015

Faculty of Health Sciences and Medicine

Bond University, Australia

Principal supervisor: Prof. Wayne Hing

Assistant supervisors: A/ Prof. Peter Johnson, Associate Prof. Allan Abbott
Abstract

Introduction: Non-invasive brain stimulation techniques are being trialed to induce neuroplasticity for meaningful purposes. Transcranial direct current stimulation (tDCS) is one such brain stimulatory technique, which involves delivering low amplitude direct current (1-2mA) to the brain via scalp electrodes. A review of the literature has suggested that repeated daily tDCS could induce lasting effects in the motor domain in a healthy population and in both the sensory and motor domains in a clinical population (Boggio et al. 2007, Mori et al. 2012, Reis et al. 2009). Of interest was whether increasing tDCS dose could evoke cumulative body sensory system function alteration in a healthy population.

Aims: A systematic review aimed to review the literature most relevant to 1_the effects of sensory cortex tDCS on sensory threshold related outcome measures and 2_the effects of motor cortex tDCS on pain threshold/intensity related outcome measures. Study 1 aimed to investigate the effects of consecutive daily sessions of tDCS on a sensory psychophysical outcome measure in a healthy population. Study 2 aimed to investigate the effects of consecutive daily sessions of tDCS on a series of pain related psychophysical, subjective and objective outcome measures in a healthy population as well as investigate the correlation between the baseline pain related psychophysical, subjective and objective outcome measures in a healthy population.

Methods: A systematic review of the literature most relevant to the aims of studies 1 and 2 was firstly undertaken. Randomised controlled trial
methodology was then utilised in Study 1 to assess the effects of 5 consecutive daily sessions of active (anodal) or sham sensory cortex tDCS on one psychophysical (i.e. vibration detection thresholds) measure in 29 healthy human volunteers. In Study 2, randomised controlled trial methodology was used to assess the effects of 5 consecutive daily sessions of active (anodal) or sham motor cortex tDCS on psychophysical (i.e. electrical, mechanical pressure and thermal detection and pain thresholds), subjective (i.e. electrical, thermal and mechanical pressure pain visual analogue scales (VAS)) and objective (i.e. salivary cortisol) outcome measures in 42 healthy human volunteers. Cross-sectional analysis of baseline data was also used in Study 2 to explore bivariate correlations between examined outcome measures.

Results: The review indicated both methodological limitations and heterogenous tDCS induced effects for trials. The review also revealed that repeated stimulation was one area that researchers had failed so far to focus on. Studies 1 and 2 demonstrated that consecutive daily sessions of anodal tDCS could not consistently alter psychophysical, subjective and objective outcome measures compared to sham in a healthy population. Study 2 also demonstrated statistically significant correlations between psychophysical and subjective outcome measures in a healthy population.

Conclusion: The results of studies 1 and 2 suggest that increasing tDCS dose does not result in more consistent anodal tDCS induced effects on body sensory/pain perception in a healthy population. As well, the results of Study 2 also may provide further evidence of the clinical utility of different types of pain assessments.
Declararion of original work

This thesis is submitted to Bond University in fulfillment of the degree of Master of Philosophy. This thesis represents my own original work towards this research degree and contains no material which has been previously submitted for a degree or diploma at this University or any other institution, except where due acknowledgement is made.

Signed:

Brookes Gregory Folmi

Date:
Acknowledgements

I would like to collectively acknowledge my supervisors (past and present) (i.e. Associate Prof. Allan Abbott, Assistant Prof. Peter Johnson, Prof. Wayne Hing and Prof. Bulent Turman) for their support and guidance throughout the course of the degree.

I would like to acknowledge Dr. James Keane for allowing me to use his laboratory workspace, assisting me with choosing the enzyme-linked immunosorbent assay (ELISA) kits and training me to run and analyse the ELISA.

I would like to acknowledge my family, friends and colleagues for their support.

I would like to acknowledge the participants for volunteering.

I would finally like to thank God for giving me the wisdom and strength to complete this degree!
Table of Contents

ABSTRACT .. II

DECLARATION OF ORIGINAL WORK .. IV

ACKNOWLEDGEMENTS ... VI

TABLE OF CONTENTS ... VIII

LIST OF TABLES ... XII

LIST OF FIGURES ... XIV

LIST OF ACRONYMS .. XVI

CHAPTER 1 ... 1

Introduction & Literature review .. 1
 1.1 The history of tDCS ... 1
 1.2 The principle of tDCS .. 2
 1.3 Key tDCS variables, limitations and delivery parameters 3
 1.4 tDCS tolerability and safety aspects .. 6
 1.5 Clinical and research applications for tDCS ... 7
 1.5.1 tDCS effects on the motor domain ... 7
 1.5.1.1 tDCS induced changes to the excitability of the motor pathway in a healthy population ... 7
 1.5.1.2 tDCS induced changes to behavioural measures of motor function 8
 1.5.2 tDCS effects on the sensory domain ... 10
 1.5.2.1 tDCS induced changes to the excitability of the sensory pathway in a healthy population ... 10
 1.5.2.2 tDCS induced changes to measures of somatosensory perception 11
 1.6 Proposed molecular mechanisms for tDCS induced post-stimulation effects in humans ... 12
 1.7 Proposed central mechanisms for motor cortex tDCS induced post-stimulation effects on pain related outcome measures in humans .. 14
 1.8 Proposed peripheral mechanisms for motor cortex tDCS induced post-stimulation effects on pain related outcome measures in humans .. 15

CHAPTER 2 ... 17

Systematic Review ... 17
 2.1 Introduction / Aim .. 17
 2.2 Methods ... 17
 2.2.1 Systematic review design .. 17
3.11.2 Setting ... 82
3.11.3 Sample size power calculation ... 82
3.11.4 Participants ... 82
3.11.5 Transcranial direct current stimulation 84
3.11.6 Outcome Measures ..85
 3.11.6.1 tDCS effects on psychophysical threshold and subjective VAS measures... 86
 3.11.6.2 tDCS effects on objective measures ... 92
 3.11.6.3 Correlations between baseline psychophysical threshold, subjective and objective measures ... 93
3.11.7 Data Analysis ..95
 3.11.7.1 tDCS effects on psychophysical threshold and subjective VAS measures... 95
 3.11.7.2 tDCS effects on objective measures ... 96
 3.11.7.3 Correlations between baseline psychophysical threshold, subjective and objective measures ... 97
3.12 Results ... 97
 3.12.1 tDCS effects on psychophysical threshold and subjective VAS measures 97
 3.12.2 tDCS effects on objective measures ... 104
 3.12.3 Correlations between baseline psychophysical threshold, subjective and objective measures ... 105
3.13 Discussion & Conclusions ... 108
 3.13.1 tDCS effects on psychophysical threshold and subjective VAS measures 108
 3.13.2 Limitations .. 113
 3.13.3 Conclusion .. 113
 3.13.4 tDCS effects on objective measures ... 113
 3.13.5 Limitations .. 116
 3.13.6 Conclusion .. 116
 3.13.7 Correlations between baseline psychophysical threshold, subjective and objective measures ... 117
 3.13.8 Limitations .. 119
 3.13.9 Conclusions .. 119

CHAPTER 4 ... 121

General Discussion & Conclusion ... 121
 4.1 Research objectives, key findings and potential explanations 121
 4.2 Concluding remarks .. 127

REFERENCES ... 129

APPENDICES ... 141

Appendix 1 Study 1 explanatory statement ... 141
Appendix 2 Study 1 pre-study questionnaire ... 147
Appendix 3 Study 1 informed consent ... 149
Appendix 4 Study 2 explanatory statement ... 150
Appendix 5 Study 2 pre-study questionnaire ... 155
Appendix 6 Study 2 informed consent... 157
Appendix 7 Study 2 pain visual analogue scales.. 158
Appendix 8 Study 2 brief sensation test protocol... 159
Appendix 9 Study 2 participant blinding visual analogue scales 160
Appendix 10 Study 2 scalp stimulation adverse effects questionnaire.............. 161
Appendix 11 Study 2 self-report general pain sensitivity questionnaire............ 162
List of Tables

Table 1 Database strategy and results... 19
Table 2 Inclusion and exclusion criteria .. 21
Table 3 Breakdown of Downs and Black (D&B) scoring 26
Table 4 Included study characteristics ... 30
Table 5 tDCS parameters of included studies.. 32
Table 6 Review A percentage changes compared to pre-tDCS 34
Table 7 Review B Percentage changes compared to pre-tDCS 40
Table 8 Participant flow information.. 58
Table 9 Participant demographic information... 59
Table 10 VDT measures.. 62
Table 11 The effects of sensory cortex tDCS on vibration detection thresholds..... 69
Table 12 VDT significant post hoc comparisons... 70
Table 13 Participant flow information.. 83
Table 14 Participant demographic data ... 84
Table 15 Psychophysical, subjective and objective outcome measures 86
Table 16 Pooled baseline psychophysical and subjective pain VAS overall, gender based and treatment based means (numbers in brackets represent standard deviations).. 99
Table 17 The effects of tDCS on experimental pain and pain tolerance thresholds 100
Table 18 Pooled scalp stimulation adverse effect occasion number treatment based means (numbers in brackets represent standard deviation)......................... 103
Table 19 The effects of tDCS on cortisol .. 104
Table 20 Spearman’s Rho correlation analysis of baseline psychophysical thresholds, subjective and objective assessments... 107
List of figures

Figure 1 Prisma flow diagram for systematic review.. 24

Figure 2 Study design, showing the time course of tDCS treatments and VDT measurements. tDCS treatments (20 mins) were delivered once per day for 5 consecutive days. Vibration detection thresholds (VDT) (for 30Hz and 200Hz and for both dominant and non dominant arms) were measured before and after tDCS on days 1, 3 and 5. .. 64

Figure 3 Pooled mean VDTs at each time point for vibrations delivered at a) 30Hz to the non-dominant upper limb, b) 30Hz to the dominant upper limb, c) 200Hz to the non-dominant upper limb and d) 200Hz to the dominant upper limb.......... 68

Figure 4 Study design, showing the time course of tDCS treatments and experimental pain measurements. tDCS treatments (30 mins) were delivered once per day for 5 consecutive days. Experimental pain (E.P) measurements were measured before and after tDCS on days 1 and after tDCS on day 5. Baseline (i.e. pre-tDCS) experimental pain measurements were measured at time point 1 only. .. 94
List of acronyms

ANOVA – analysis of variance
BDNF - brain-derived neurotrophic factor
CPT - cold pressor pain threshold
CTT - cold pressor tolerance threshold
EDT - electric detection threshold
EEG - electroencephalography
ELISA – enzyme-linked immunosorbent assay
EP – experimental pain
EPT - electric pain threshold
EMG- electromyography
FDI – first dorsal interosseous
fMRI – functional magnetic resonance imaging
GABA – gamma-amino-butyric acid
HPA - hypothalamic-pituitary-adrenal
LTP – long-term potentiation
MEP – motor evoked potential
MOR - mu opioid receptor
MRI – magnetic resonance imaging
MRS - magnetic resonance spectroscopy
NaCl – sodium chloride
PPT - pressure pain threshold
rTMS – repetitive transcranial magnetic stimulation
SD – standard deviation
SEP - somatosensory evoked potentials
SPSS – statistical package for the social sciences

SRGPSQ - self-reported general pain sensitivity questionnaire

tDCS - transcranial direct current stimulation

TMS – transcranial magnetic stimulation

TrkB – tropomyosin related kinase B

VAS – visual analogue scale

VDT - vibration detection threshold