Contractile activity of the bladder urothelium and lamina propria

By

Christian Moro

Thesis submitted to Bond University in total fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY
ABSTRACT

The normal function of the urinary bladder is to store and void urine in a controlled manner. During the filling stage the bladder exhibits spontaneous non-voiding contractions yet the mechanisms underlying these contractions are unclear. The internal lining of the bladder (urothelium/lamina propria) is an important regulator of bladder function by its involvement in sensory mechanisms and via releasing chemical mediators. In addition, the urothelium/lamina propria also exhibits spontaneous contractions which are mediated by unknown mechanisms. This activity may influence contractions of the bladder and play an important role in bladder function. The present study aimed to investigate the spontaneous contractions of the urothelium/lamina propria to identify receptors which modulate the activity.

In the absence of any neuronal input, strips of urothelium/lamina propria developed spontaneous contractions with a frequency of 3.72 cycles min\(^{-1}\) and an amplitude of 0.65g. The frequency and tension of contractions was increased by stimulation of muscarinic receptors and \(\alpha_1\)-adrenoceptors, and inhibited by \(\beta\)-adrenoceptor stimulation. Each of these receptor systems is a target for clinical therapies used to treat bladder dysfunction, and these results identify the urothelium/lamina propria as a potential site of action for these agents. Using RT-PCR all \(\alpha_1\)- and \(\beta\)-adrenoceptor subtypes were present at the mRNA level in the urothelium/lamina propria, whilst organ bath experiments with receptor subtype selective agonists and antagonists demonstrated that the main functional adrenoceptors in the tissue were the \(\alpha_{1A/L}\)- and \(\beta_2\)-adrenoceptors. Functional experiments also showed that nitric oxide donors decreased the rate of spontaneous contractions and inhibited responses to muscarinic receptor stimulation or electrical field stimulation. However, nitric oxide was not released spontaneously in response to stretch, EFS or muscarinic receptor stimulation. Activation of the nerves innervating the urothelium/lamina propria results in tissue contraction, yet the dominant neurotransmitter released does not activate muscarinic, adrenergic, or purinergic receptors. Upon removal of the urothelium the baseline frequency and tension of spontaneous contractions, and the response to muscarinic and \(\beta\)-adrenergic receptor activation remained unchanged. This identified the lamina propria as the layer responsible for the contractile activity.

In conclusion, the urothelium/lamina propria exhibits spontaneous contractile activity that may influence bladder activity. The rate of contraction was higher in the urothelium/lamina propria compared to the detrusor; however, it is possible that in diseased states of the bladder, these tissues may be more tightly coupled leading to lower urinary tract dysfunction. Therefore, the receptors within the urothelium/lamina propria present novel therapeutic targets for the treatment of bladder disorders.
TABLE OF CONTENTS

CHAPTER 1
General Introduction
1.1 ANATOMY OF THE LOWER URINARY TRACT .. 2
1.1.1 The lower urinary tract ... 2
1.1.2 The urethra and ureters .. 7
1.1.3 Barrier function of the urothelium ... 8
1.2 INTERSTITIAL CELLS ... 11
1.3 NEUROPHYSIOLOGY OF THE LOWER URINARY TRACT ... 16
1.3.1 The micturition cycle .. 16
1.3.2 Efferent innervation ... 18
1.3.3 Afferent innervation ... 19
1.3.4 The filling and storage phase .. 20
1.3.5 The voiding phase ... 21
1.4 SPONTANEOUS ACTIVITY .. 23
1.4.1 Role of the urothelium and lamina propria in detrusor spontaneous contractions 26
1.4.2 Spontaneous activity of the urothelium/lamina propria .. 28
1.5 RECEPTORS AND SYSTEMS IN THE URINARY BLADDER .. 32
1.5.1 Cholinergic receptors ... 32
1.5.2 Adrenoceptors ... 44
1.5.3 Purinergic receptors ... 57
1.5.4 Nitric oxide system of the bladder .. 60
1.5.5 Cannabinoid receptors ... 65
1.5.6 Transient receptor potential (TRP) receptors ... 67
1.5.7 Neurokinin receptors ... 69
1.5.8 Histamine receptors ... 71
1.5.9 5-Hydroxytryptamine receptors ... 72
1.5.10 Oestrogen receptors ... 73
1.6 DISORDERS OF THE BLADDER .. 76
1.6.1 Overactive bladder ... 76
1.6.2 Interstitial cystitis ... 78
1.6.3 Stress incontinence ... 81
1.6.4 Bladder infections ... 82
1.6.5 Overflow incontinence and bladder outlet obstruction ... 82
1.6.6 Bladder dysfunction in Australia .. 83
1.7 GENERAL HYPOTHESIS AND AIMS ... 86

CHAPTER 2
Materials and Methods
2.1.1 Collection of bladders ... 88
2.1.2 Tissue preparation ... 88
2.1.3 Functional organ bath experiments .. 89
2.1.4 Measurements of spontaneous activity .. 91
2.1.5 Urothelial contractile responses: concentration-response curves .. 92
2.1.6 Electrical field stimulation ... 93
2.1.7 Analysis of data .. 96
2.1.8 Drugs and solutions .. 97
2.1.9 Real-time quantitative PCR analysis ... 99
CHAPTER 7
Non-adrenergic, non-cholinergic, non-purinergic contractions of the urothelium/lamina propria of the pig bladder
7.1 Abstract.. 181
7.2 Introduction.. 182
7.3 Materials and methods.................................. 183
7.3.1 Drugs and solutions.................................. 183
7.4 Results.. 184
7.5 Discussion.. 190
7.6 Conclusions... 194

CHAPTER 8
Effects of mechanical removal of the urothelium from pig bladder dome
8.1 Introduction.. 197
8.2 Methods... 200
8.2.1 Mechanical disruption of the urothelium....... 200
8.2.2 Histology.. 200
8.2.3 Histological analysis................................. 202
8.2.4 Tissue Setup... 203
8.2.5 Responses to agonists............................... 203
8.3 Results.. 204
8.3.1 Control Tissues.. 204
8.3.2 Effect of dabbing the tissue with a paper towel 205
8.3.3 Effect of a single or double longitudinal swipe with a cotton bud 205
8.3.4 Effect of a single or double longitudinal swipe with a cotton bud 205
8.3.5 Effect of three longitudinal sweeps with a cotton bud 206
8.3.6 Effect of four longitudinal sweeps with a cotton bud 206
8.3.7 Effect of longitudinal scrape with the edge of a scalpel 206
8.4 Conclusion from histological studies............. 209
8.4.1 Spontaneous activity of urothelium/lamina propria strips 209
8.4.2 Response to carbachol............................... 210
8.4.3 Response to isoprenaline.......................... 210
8.5 Discussion.. 213

CHAPTER 9
General Discussion
9.1.1 The spontaneous activity of the urothelium/lamina propria.............. 218
9.1.2 Spontaneous contractile activity in the detrusor......................... 220
9.1.3 The influence of the urothelium/lamina propria on bladder activity........ 221
9.1.4 The role of interstitial cells within the lamina propria.................. 222
9.1.5 Modulation of urothelial/lamina propria activity........................ 223
9.1.6 The physiological role of the urothelial/lamina propria contractile activity 228
9.1.7 Implications for future drug development................................. 229
9.1.8 Final remarks... 231

REFERENCES... 232
LIST OF FIGURES

Figure 1-1: The location and regions of the female and male lower urinary tract 3
Figure 1-2: Illustration of the layers in the bladder ... 5
Figure 1-3: The layers of the urothelium .. 6
Figure 1-4: Depiction of the transitional nature of the bladder umbrella cells 6
Figure 1-5: Haematoxylin and eosin stain of a transverse section of the bladder 7
Figure 1-6: The apical urothelial layer .. 10
Figure 1-7: A section of the wall from the dome of the bladder .. 15
Figure 1-8: Image depicting a spindle-shaped bladder interstitial cell .. 15
Figure 1-9: Innervation of the bladder .. 17
Figure 1-10: Urothelial-derived transmitters acting on the detrusor smooth muscle 31
Figure 1-11: Diagram representing the intracellular actions of acetylcholine 37
Figure 1-12: Illustration of common neurotransmitters released from the bladder 45
Figure 1-13: The synthesis of nitric oxide ... 64
Figure 1-14: The prevalence of bladder disorders in Australia .. 85
Figure 2-1: Whole pig bladder ... 89
Figure 2-2: Custom-made organ baths ... 90
Figure 2-3: The experimental organ bath setup .. 90
Figure 2-4: Calculation of the amplitude and the frequency of spontaneous activity 91
Figure 2-5: Demonstration of methods used to determine responses to agonists 92
Figure 2-6: The grass S48 Stimulator used to generate EFS signals .. 95
Figure 2-7: Demonstration of the methods used to calculate EFS-mediated contraction 95
Figure 3-1: RNA integrity shown in a 2% formaldehyde agarose gel ... 112
Figure 3-2: PCR cycling graph showing evidence for a high expression of 18S RNA 114
Figure 3-3: PCR cycling graph showing the exponential increases in fluorescence the β-actin ... 115
Figure 3-4: Gel showing the fragment sizes of the 6 cDNA samples ... 115
Figure 3-5: Digital electropherograms from a QIAxcel system of the 6 PCR fragments 116
Figure 3-6: Melt curve and electropherograms ... 119
Figure 3-7: Melt curves for each β3 gene showing the affinity of primers 120
Figure 4-1: Spontaneous activity of isolated urothelium/lamina propria strips 130
Figure 4-2: Increases in urothelium/lamina propria frequency induced by carbachol 131
Figure 4-3: Effects of clinically used anti-muscarinic drugs .. 132
Figure 4-4: Increases in the frequency of spontaneous contractions 133
Figure 5-1: Experimental trace showing the effects of DEANO on contractile activity 149
Figure 5-2: Effects of DEANO and sodium nitroprusside .. 149
Figure 5-3: Frequency and baseline tension responses of strips of urothelium/lamina propria ... 150
Figure 5-4: Cumulative concentration-response curves to carbachol 151
Figure 5-5: Contractile responses to electrical field stimulation 153
Figure 6-1: Typical experimental traces showing the effects of adrenoceptor agonists 170
Figure 6-2: Frequency and tension responses induced by phenylephrine 171
Figure 6-3: Frequency and tension inhibitions induced by isoprenaline 172
Figure 6-4: Relative expression of each adrenoceptor gene ... 173
Figure 7-1: Responses of urothelium/lamina propria strips to EFS 186
Figure 7-2: Urothelium/lamina propria contractile responses to electrical field stimulation ... 187
Figure 7-3: Experimental traces of urothelial/lamina propria contractile activity 188
Figure 7-4: The responses to electrical field stimulation of the urothelium/lamina propria 189
Figure 8-1: The bladder wall illustrating the various cell layers 199
Figure 8-2: Rectangular moulds of paraffin holding the bladder specimens 201
Figure 8-3: Transverse section of the bladder dome stained with haematoxylin and eosin 204
Figure 8-4: Urothelium/lamina propria tissues after dissection from the detrusor muscle 207
Figure 8-5: Effect of dabbing the tissue once with a paper towel 207
Figure 8-6: Effect of dabbing the tissue two times with a paper towel 207
Figure 8-7: Effect of two longitudinal swipes with a cotton bud 208
Figure 8-8: Effect of three longitudinal swipes with a cotton bud 208
Figure 8-9: Effect of four longitudinal swipes with a cotton bud 208
Figure 8-10: Effect of a longitudinal scrape with the edge of a scalpel 209
Figure 8-11: The baseline spontaneous contractile activity and response to carbachol 211
Figure 8-12: Representative traces depicting the baseline spontaneous activity 211
Figure 8-13: The effect of carbachol on tissues that had undergone three swipes 212
Figure 8-14: The effects of isoprenaline on tissues after three swipes with a cotton bud 212
LIST OF TABLES

Table 1: Forward primers custom-designed for the identification of adrenoceptor genes 104
Table 2: Reverse primers custom-designed for the identification of adrenoceptor genes 104
Table 3: Published values of antagonist affinities for M1 – M3 subtypes. 108
Table 4: Published values of antagonist affinities for α-adrenoceptor subtypes 109
Table 5: Published values of antagonist affinities for β1–β3 subtypes. 109
Table 6: Nanodrop recordings for each RNA sample ... 112
Table 7: Optimal PCR parameters found for each individual gene .. 117
Table 8: Two types of primers used for analysis of the porcine β3-adrenoceptor 119
Table 9: Contractile responses of urothelium/lamina propria and detrusor strips to EFS 152
Table 10: Porcine receptor-specific PCR primer sequence and PCR amplicon sizes 164
Table 11: Frequency and tension responses of urothelium/lamina propria to noradrenaline 167
Table 12: Drugs influencing peptidergic neurotransmission .. 189
PUBLICATIONS AND ABSTRACTS ARISING FROM THIS THESIS.

ACKNOWLEDGEMENTS

I would like to thank my wonderful wife Christie, who has consistently been there for me throughout this project. Thank you for tolerating my countless nights in the laboratories and the long hours of typing and processing that followed. I couldn’t have achieved this without your support.

To my supervisor Professor Russ Chess-Williams, thank you for your never-ending support, guidance and assistance. You have developed my scientific and writing abilities and I am extremely grateful for your expert support. To Dr Donna Sellers, it has been an absolute pleasure working with you as my co-supervisor, both in the labs and throughout the draft phases of this thesis. I have enjoyed your enthusiasm and greatly appreciate your advice.

I thank the Bond Urology Group, a fantastic, vibrant group of young scientists. It has been amazing to observe the Bond research laboratories grow throughout my time, and it has been an honour working in such a professional and friendly research environment. And to my fellow PhD students, thank you for keeping each other sane and turning our office into a great environment which I look forward to coming into every day.

I also appreciate the support and problem-solving abilities of the administering staff in the Bond University Faculty of Health Sciences and Medicine, and the Bond University Office of Research Services.

And finally to my parents, grandparents and family who have always shown interest in this project and supported me throughout its development. Thank you.

2012
DECLARATION

This thesis is submitted to Bond University in fulfilment of the requirements for the degree of Doctor of Philosophy. This thesis represents my own original work towards this research degree and contains no material which has been previously submitted for a degree or diploma at this University or other institution, except where due acknowledgement is made.

Christian Moro

Supervisor: Professor Russ Chess-Williams. Associate Dean of Research, Faculty of Health Sciences and Medicine. Bond University.

Co-Supervisor: Associate Professor Donna Sellers. Faculty of Health Sciences and Medicine. Bond University.