RESPONSES IN VASCULAR FUNCTION TO EXERCISE IN WOMEN AGED 65-74 YEARS WITH TYPE 2 DIABETES

Submitted in total fulfilment of the requirements of the degree Doctor of Philosophy

by

KEVIN SERRE
June 2013
CORRESPONDENCE

Kevin R Serre
Faculty of Health Sciences and Medicine
Bond University, Queensland
Australia, 4229

Telephone: +1 (613) 717 5135
Facsimile: +1 (613) 383-0156
Email: keserre@bond.edu.au
NAVIGATION OF THESIS

This thesis is made up of five chapters. Chapter One provides an overview of the literature with specific focus on the role of the microvasculature in the development of cardiovascular disease, particularly in women. Background information on the theory and methodology behind automated measurement of both retinal vessel calibre and fractal dimension is also described in detail. In Chapter One, the purpose and aims of this thesis are outlined.

Following Chapter One are three experimental studies, presented as three individual chapters (Chapters Two, Three, and Four). Each of the three experimental studies (Study One, Two, and Three) are distinct bodies of work that address the experimental aims of this thesis.

Chapter Five presents a discussion and conclusion section summarising the findings of the experimental studies in this thesis and provides information regarding the possible practical and/or clinical application of these findings.
ABSTRACT

The primary aim of this thesis is to examine changes in retinal microvascular structure and asymmetric dimethylarginine (ADMA) concentration in women aged 65-74 yr with type 2 diabetes, following twelve weeks of controlled and supervised exercise training at individual gas-exchange threshold (T_{ge}). In particular, this thesis examined the relationship between retinal vessel calibre/fractal analysis and measures of physiological functional capacity and endothelial function. Data from this thesis provide new knowledge on the effects of moderate intensity exercise on retinal microvascular morphology [retinal vessel calibre (RVC) and fractal dimension (D_f)] and ADMA concentration in women with type 2 diabetes. The same subjects were recruited for all studies.

Study One

The purpose of Study One was to investigate the relationship among retinal vessel calibre, fractal dimensions and physiological functional capacity in females aged 65-74 years with and without type 2 diabetes. Forty females (19 with type 2 diabetes and 21 without type 2 diabetes) underwent graded treadmill exercise testing to voluntary fatigue. Retinal photographs were obtained at a clinical eye examination from which retinal vascular calibre and fractal dimensions were quantified using a computer-based program (IRIS and IVAN) and summarized as the central retinal artery equivalent (CRAE) or central retinal vein equivalent (CRVE) and D_f. Subjects with type 2 diabetes had significantly lower peak oxygen uptake, peak heart rate, peak respiratory exchange ratio and time to exhaustion compared to age and gender-match subjects without type 2 diabetes. There were no significant differences between subjects with or without type 2 diabetes in CRAE (with diabetes 153.3±3.8 µm vs. without diabetes 154.7±2.7 µm, $p = 0.760$), CRVE (with diabetes 220.2±4.4 µm vs. without diabetes 230.8±4.9 µm, $p = 0.121$), or fractal dimension (with diabetes 1.45±0.004 vs. without diabetes 1.45±0.004, $p = 0.595$). In this sample of women aged 65-74 years, retinal vascular complexity (branching pattern) assessed as D_f was found to be significantly correlated ($r = 0.48$, $p = 0.04$) with time to exhaustion in individuals with type 2 diabetes. These findings provide the first evidence of a significant association between measures of physiological
functional capacity and retinal branching patterns in individuals with type 2 diabetes, which is considered a key parameter for the efficiency of microcirculation.

Study Two

While exercise training has been prescribed as a preventive and therapeutic intervention for cardiovascular disease in individuals with type 2 diabetes, the effects of exercise training on the retinal microvascular responses are not well described. Study Two investigated the effect of twelve weeks of supervised walking exercise on retinal vessel calibre and fractal dimension - markers of early microvascular complications - in women aged 65-74 years with type 2 diabetes. Fifteen women completed twelve weeks of supervised walking (120 minutes per week) at an intensity equivalent to their individual \(T_{ge} \). Retinal photographs were taken and microvascular responses to exercise (via maximal exercise tests) were assessed before and after a 6-week intervention-free control period, and again after 6 and 12-weeks of exercise training. Twelve weeks of exercise training at \(T_{ge} \) resulted in significant increases in time to exhaustion (\(p < 0.001 \)), peak oxygen uptake (\(VO_{2\text{peak}} \) (\(p = 0.016 \)), \(VO_{2\text{peak}} \) relative to body mass (\(p = 0.026 \)), respiratory exchange ratio (\(p = 0.040 \)), \(VO_{2} \) at \(T_{ge} \) (\(p = 0.030 \)), heart rate at \(T_{ge} \) (\(p = 0.033 \)) as well as significant reductions in systolic (\(p = 0.014 \)) and diastolic (\(p = 0.032 \)) blood pressure. However, no significant changes in mean retinal vessel calibre or retinal fractal dimension were found after six or twelve weeks of exercise training. We could not document any significant changes in either RVC or \(D_{f} \) after twelve weeks of moderate-intensity, walking exercise in this sample of older women with type 2 diabetes. This contrasts with other studies showing that mild physical activity is associated with less adverse retinal microvascular signs.

Study Three

Basal plasma concentration of ADMA, an endogenous, competitive inhibitor of nitric oxide synthase, is elevated in patients with type 2 diabetes. ADMA may contribute to the endothelial dysfunction and associated vascular complications observed in individuals with type 2 diabetes. The purpose of Study Three was to investigate the effect of twelve weeks (120 minutes per week) of supervised walking exercise on plasma ADMA concentration in women aged 65-74 years with type 2 diabetes. Fourteen women (aged 69 ± 3 yrs) with uncomplicated type 2 diabetes, completed twelve weeks of supervised
walking at an intensity equivalent to their individual T_{ge}. Blood was sampled for ADMA concentration before and after a 6-week intervention-free control period, and again after six and twelve weeks of exercise training. Plasma ADMA concentration was found to be significantly lower after twelve weeks of exercise training when compared with baseline (wk 0) measurements. These results were accompanied by significant increases in time to exhaustion, relative and absolute VO$_2$peak, and VO$_2$ at T_{ge}. Regular, moderate-intensity exercise decreases circulating ADMA concentrations in older women with type 2 diabetes. These results suggest that ADMA may play a role in the training-induced reduction in cardiovascular disease risk seen with exercise training in individuals with type 2 diabetes.

Conclusion

The findings presented in this thesis support the use of regular, moderate-intensity exercise as an effective intervention for the management of type 2 diabetes in older women aged 65-74 years.
DECLARATION

This thesis is submitted to Bond University in total fulfilment of the requirements of the degree of Doctor of Philosophy. This thesis represents my own original work towards this research degree and contains no material which has been previously submitted for a degree or diploma at this University of any other institution, except where due acknowledgement is made.

Kevin Serre
ACKNOWLEDGEMENTS

I would like to acknowledge my colleagues, friends, and family for their support and encouragement throughout the period of my doctoral candidature. First and foremost, I acknowledge and thank my chief supervisor, Professor Greg Gass. Thank you Greg for the contributions of time, ideas, and funding that made completing my Ph.D. possible. Thank you for your patience during this process, even when I was “on the tools” and a bit distracted at times. To my associate supervisor, Associate Professor Bon Gray, thank you for your support and valuable encouragement throughout my candidature. If it wasn’t for your daily question of “have you thought about doing a Ph.D?” during my Master’s degree, I certainly would not have made this important step.

For all of you whom I have had the pleasure of working on this project with past and present, thank you for your help. Mike, it was a pleasure collaborating on this project with you. Our chats on basketball and T.V. certainly made watching the treadmills go a bit faster. Su, thank you for your commitment to this project. From helping chauffeur to providing constant advice and guidance, your support was much needed and much appreciated.

Finally, and most importantly, thank you to my wife Ashley and children Lochlan and Isla, who have provided me with constant support and patience throughout this process. Always there to remind me of my priorities and to keep things in perspective, I could not have done this without you.
TABLE OF CONTENTS

CORRESPONDENCE ... ii

NAVIGATION OF THESIS ... iii

ABSTRACT .. iv

Study One ... iv
Study Two ... v
Study Three .. v
Conclusion .. vi

DECLARATION ... vii

ACKNOWLEDGMENTS ... viii

TABLE OF CONTENTS .. ix

LIST OF PUBLICATIONS ... xiv

LIST OF TABLES ... xv

LIST OF FIGURES ... xvi

ABBREVIATED TERMS .. xviii

LIST OF APPENDICES .. xx

CHAPTER 1

1.0 Introduction - An Overview of the Literature and Statement of Purpose .. 1

1.1 Ageing, Exercise and Women’s Health ... 2

1.2 Type 2 Diabetes Mellitus .. 4

1.3 Type 2 Diabetes Mellitus and Atherosclerosis ... 6

1.4 Diabetes and Endothelial Function ... 7
CHAPTER 2 - Study One

Physiological Functional Capacity and Retinal Microvascular Morphology in Women Aged 65-74 Yr with and without Type 2 Diabetes

2.1 Introduction

2.2 Methods

2.2.1 Subjects and Recruitment Strategies

2.2.2 Determination of Peak Oxygen Uptake and Gas-Exchange Threshold

2.2.3 Retinal Photography and Measurement of Retinal Vascular Calibre

2.2.4 Measurement of Retinal Fractal Dimension

2.2.5 Statistical Analysis

2.3 Results

2.3.1 Age, Blood Pressure, and Anthropometric Variables

2.3.2 Lipid Profile, Blood Glucose, and Haematology

2.3.3 Physiological Functional Capacity

2.3.4 Retinal Vessel Calibre and Fractal Analysis

2.3.5 Relationships between Retinal Vessel Calibre, Fractal Analysis, and Gas Exchange Data
CHAPTER 3 - Study Two

Retinal Microvascular Responses to Exercise in Women with Type 2 Diabetes ... 50

3.1 Introduction .. 51

3.2 Patients and Methods ... 52

 3.2.1 Subjects and Recruitment Strategies 52

 3.2.2 Determination of Peak Oxygen Uptake and Gas-Exchange Threshold ... 53

 3.2.3 Exercise Training Program ... 54

 3.2.4 Retinal Photography and Measurement of Retinal Vascular Calibre ... 55

 3.2.5 Measurement of Retinal Fractal Dimension 55

 3.2.6 Statistical Analysis .. 56

3.3 Results .. 56

3.4 Discussion .. 57

CHAPTER 4 - Study Three

Effect of Exercise Training on Asymmetric Dimethylarginine Concentration in Women Aged 65-74 Yr with Type 2 Diabetes ... 67

4.1 Introduction .. 68

4.2 Methods .. 69

 4.2.1 Participants and Recruitment Strategies 69

 4.2.2 Determination of Peak Oxygen Uptake and Gas-Exchange Threshold ... 70

 4.2.3 Exercise Training Program ... 71
4.2.4 Determination of Asymmetric Dimethylarginine 72
4.2.5 Statistical Analysis 72
4.3 Results 72
4.4 Discussion and Conclusions 73

CHAPTER 5 General Discussion and Conclusions 78
5.1 Review of Findings 79
5.2 Discussion 81
5.3 Conclusions 83

REFERENCES 84
APPENDIX A Sample Information Sheet and Consent Form 108
APPENDIX B Medical History Questionnaire 127
APPENDIX C Physical Activity Readiness Questionnaire 132
APPENDIX D Example of GP Letter 134
APPENDIX E Blood Sampling Methodology 139
LIST OF PUBLICATIONS

The following publications are listed in support of this thesis;

Accepted for publication:

Submitted for publication:

LIST OF TABLES

Chapter 1

Table 1. Conditions associated with changes in central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) … 17

Table 2. Summary of studies examining the modifiable lifestyle and environmental determinants affecting the retinal microvasculature. (Serre and Sasongko 2011) 35

Chapter 2

Table 1. Characteristics of participating subjects with and without type 2 diabetes. Mean ± SEM ... 47

Table 2. Blood profiles of participating subjects with and without type 2 diabetes. Mean ± SEM ... 47

Table 3. Haematological characteristics of participating subjects with and without type 2 diabetes. Mean ± SEM 47

Table 4. Gas exchange data for participating subjects with and without type 2 diabetes. Mean ± SEM 48

Chapter 3

Table 1. Clinical characteristics of participating subjects before (wk -6) and after (wk 0) 6-week intervention-free control period. Mean ± SEM ... 62

Table 2. Retinal vessel measurements of participating subjects by week (-6,0,6,12). Mean ± SEM ... 63

Chapter 4

Table 1. Clinical characteristics of participating subjects before (wk -6) and after (wk 0) 6-week intervention-free control period and after 6 and 12-weeks of exercise training. Mean ± SEM 76
LIST OF FIGURES

Chapter 1

Figure 1. Age-specific prevalence of diagnosed type 2 diabetes, 2004-2005 ... 4

Figure 2. Endothelial dysfunction in diabetes 8

Figure 3. Hypothesised response of arteries to increased flow and shear stress following varying duration of exercise training … 10

Figure 4. Pathophysiological consequences of elevated ADMA concentrations ... 13

Figure 5. Comparison of plasma ADMA concentration (µM/L) in normal subjects and patients with type 2 diabetes 14

Figure 6. Sample of retinal photo taken from a patient for grading of retinal vessel calibre ... 17

Figure 7. Retinal vessel diameters passing through an area between circles with a 0.5 and 1.0 standard disc diameters from the optic disc margin (Zone B) ... 18

Figure 8. The AVR of two retinal photographs.
(A) Low AVR and (B) High AVR ... 19

Figure 9. Example of fractal images displaying self-similarity and increasing complexity under magnification 20

Figure 10. IRIS automated calculation of D_f .. 21

Figure 11. Fractal dimension and systolic blood pressure in 300 participants of Blue Mountain Eye Study 22

Figure 12. (A) An eye with a high fractal dimension ($D_f = 1.4958$).
(B) An eye with an intermediate fractal dimension ($D_f = 1.4541$).
(C) An eye with a low fractal dimension ($D_f = 1.4073$) 23

Figure 13. (A) Examples of retinal vascular images with different morphologies, showing, from left to right, decreasing arteriolar calibre and vessel density.
(B) Measurement of retinal arteriolar and venular calibre 26
Chapter 2

Figure 1. Fractal dimension, VO₂, and time to exhaustion in participating subjects without (Δ) and with (▲) type 2 diabetes. R is the Pearson product–moment correlation coefficient ... 49

Chapter 3

Figure 1. Changes in systolic blood pressure (Δ), and diastolic blood pressure (▲) during 6-week control period (wk -6 to wk 0), and after 6 and 12-weeks of exercise training (wk 0 to wk 6 to wk 12). Mean ± SEM. *, p < 0.05, significantly different to pre-training (wk 0) 64

Figure 2. (A) Changes in peak VO₂ (○), (B) VO₂ at T_{ge} (□), (C) time to exhaustion (TE) (X) during 6-week control period (wk -6 to wk 0), and after 6 and 12-weeks of exercise training (wk 0 to wk 6 to wk 12). Mean ± SEM. *, p < 0.05, significantly different to pre-training (wk 0) ... 65

Figure 3. (A) Changes in CRAE (○), (B) CRVE (□), (C) AVR (X), and (D) D_f (▲) during 6-week control period (wk -6 to wk 0), and after 6 and 12-weeks of exercise training (wk 0 to wk 6 to wk 12). Mean ± SEM ... 66

Chapter 4

Figure 1. Changes in plasma ADMA concentration (▲) during 6-week control period (wk -6 to wk 0), and after 6 and 12-weeks of exercise training (wk 0 to wk 6 to wk 12). Mean ± SEM. *, p < 0.05, significantly different to pre-training (wk 0) ... 77
Abbreviated Terms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACEI</td>
<td>angiotensin-converting enzyme inhibitor</td>
</tr>
<tr>
<td>ADMA</td>
<td>asymmetric dimethylarginine</td>
</tr>
<tr>
<td>ARB</td>
<td>angiotensin-receptor blocker</td>
</tr>
<tr>
<td>ARIC</td>
<td>atherosclerosis risk in communities</td>
</tr>
<tr>
<td>AVR</td>
<td>arteriole-to-venule ratio</td>
</tr>
<tr>
<td>BDES</td>
<td>beaver dam eye study</td>
</tr>
<tr>
<td>BMES</td>
<td>blue mountain eye study</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>BP</td>
<td>blood pressure</td>
</tr>
<tr>
<td>CHD</td>
<td>coronary heart disease</td>
</tr>
<tr>
<td>CKD</td>
<td>chronic kidney disease</td>
</tr>
<tr>
<td>CRAE</td>
<td>central retinal artery equivalent</td>
</tr>
<tr>
<td>CRVE</td>
<td>central retinal vein equivalent</td>
</tr>
<tr>
<td>CVD</td>
<td>cardiovascular disease</td>
</tr>
<tr>
<td>D_f</td>
<td>fractal dimension</td>
</tr>
<tr>
<td>DDAH-1</td>
<td>dimethylarginine dimethylaminohydrolase 1</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylenediaminetetraacetic acid</td>
</tr>
<tr>
<td>FEV$_1$</td>
<td>forced expiratory volume in 1 second</td>
</tr>
<tr>
<td>FPG</td>
<td>fasting plasma glucose concentration</td>
</tr>
<tr>
<td>FVC</td>
<td>forced vital capacity</td>
</tr>
<tr>
<td>GC</td>
<td>guanylate cyclase</td>
</tr>
<tr>
<td>GI</td>
<td>glycaemic index</td>
</tr>
<tr>
<td>GLUT-4</td>
<td>glucose transporter protein</td>
</tr>
<tr>
<td>GMP</td>
<td>guanosine monophosphate</td>
</tr>
<tr>
<td>GP</td>
<td>general practitioner</td>
</tr>
<tr>
<td>HbA1c</td>
<td>glycosylated haemoglobin</td>
</tr>
<tr>
<td>HDL</td>
<td>high-density lipoprotein</td>
</tr>
<tr>
<td>HRR</td>
<td>heart rate reserve</td>
</tr>
<tr>
<td>IFG</td>
<td>impaired fasting glucose</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>IGT</td>
<td>impaired glucose tolerance</td>
</tr>
<tr>
<td>IRIS</td>
<td>international retinal imaging software</td>
</tr>
<tr>
<td>IVAN</td>
<td>computer-based retinal grading program</td>
</tr>
<tr>
<td>LDL</td>
<td>low-density lipoprotein</td>
</tr>
<tr>
<td>MAP</td>
<td>mean arterial pressure</td>
</tr>
<tr>
<td>MESA</td>
<td>multi-ethnic study of atherosclerosis</td>
</tr>
<tr>
<td>NHPA</td>
<td>national health priority areas</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>NOS</td>
<td>nitric oxide synthase</td>
</tr>
<tr>
<td>OGTT</td>
<td>oral glucose tolerance test</td>
</tr>
<tr>
<td>PAR-Q</td>
<td>physical activity readiness questionnaire</td>
</tr>
<tr>
<td>PFC</td>
<td>physiological functional capacity</td>
</tr>
<tr>
<td>PM</td>
<td>fine particulate matter</td>
</tr>
<tr>
<td>RetVIC</td>
<td>retinal vascular imaging centre</td>
</tr>
<tr>
<td>RER</td>
<td>respiratory exchange ratio</td>
</tr>
<tr>
<td>RVC</td>
<td>retinal vessel calibre</td>
</tr>
<tr>
<td>SBP</td>
<td>systolic blood pressure</td>
</tr>
<tr>
<td>SCORM</td>
<td>singapore cohort study of the risk factors for myopia</td>
</tr>
<tr>
<td>TE</td>
<td>time to exhaustion</td>
</tr>
<tr>
<td>T_{ge}</td>
<td>gas-exchange threshold</td>
</tr>
<tr>
<td>TV</td>
<td>television</td>
</tr>
<tr>
<td>V_{E,BTPS}</td>
<td>expired minute ventilation</td>
</tr>
<tr>
<td>VCO_2</td>
<td>carbon dioxide output</td>
</tr>
<tr>
<td>VO_2</td>
<td>oxygen uptake</td>
</tr>
<tr>
<td>VO_2_{peak}</td>
<td>peak oxygen uptake</td>
</tr>
<tr>
<td>Wk</td>
<td>week</td>
</tr>
<tr>
<td>Yr</td>
<td>year</td>
</tr>
</tbody>
</table>
LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix A</td>
<td>Sample Information Sheet and Consent Form</td>
<td>108</td>
</tr>
<tr>
<td>Appendix B</td>
<td>Medical History Questionnaire</td>
<td>127</td>
</tr>
<tr>
<td>Appendix C</td>
<td>Physical Activity Readiness Questionnaire</td>
<td>132</td>
</tr>
<tr>
<td>Appendix D</td>
<td>Example of GP Letter</td>
<td>134</td>
</tr>
<tr>
<td>Appendix E</td>
<td>Blood Sampling Methodology</td>
<td>139</td>
</tr>
</tbody>
</table>