Risk Management in the Australian Stockmarket using Artificial Neural Networks

Bjoern Krollner

A dissertation submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy for the School of Information Technology, Bond University.

December 2011
Statement of Original Authorship

This thesis is submitted to Bond University in fulfilment of the requirements of the degree of Doctor of Philosophy. This thesis represents my own original work towards this research degree and contains no material which has been previously submitted for a degree or diploma at this University or any other institution, except where due acknowledgement is made.

Bjoern Krollner

Date
Abstract

This thesis proposes an Artificial Neural Network (ANN) enhanced decision support system for financial risk management. The decision support system allows hedgers to maximise their expected return while practising the hedge against financial risks.

The importance of the research stems from the fact that it can be used to reduce the risk associated with adverse price movements in the stock market.

The literature review reveals that there are a large number of studies trying to forecast movements in the stock market, but there is a lack of literature trying to improve stock market risk management strategies with machine learning techniques.

This thesis addresses this gap by applying the existing body of literature in stock index forecasting with machine learning techniques to the domain of portfolio risk management. In particular, it analyses whether strategies used to predict movements in the stock index can also be used to derive hedging strategies and improve the overall risk-return trade off an investor faces.

A new market timing model based on ANNs is developed which forms the heart of the proposed decision support system. The system analyses stockmarket and futures data and makes a prediction about expected stock market conditions one month ahead. The proposed ANN based hedging strategy uses stock index futures to protect the portfolio against downturns in the share market.

Overall, this thesis concludes that the proposed model achieves a significant improvement in the risk-return tradeoff compared to the benchmark hedging strategies in the Australian stockmarket.
Additional Publications

The following is a list of publications by the candidate on matters relating to this thesis.

Acknowledgements

This thesis would not have been possible without the support of many people to whom I would like to express my gratitude.

In particular, I would like to thank Dr Bruce Vanstone and Prof Gavin Finnie who jointly supervised this PhD thesis. I very much appreciated their policy of an open door, whenever I needed assistance they were always available to discuss issues and offer feedback. Their guidance and comments have been invaluable.

I would also like to thank Bruce for supporting me through tough times beyond the duties of a PhD supervisor which helped me to stay on track with my PhD research.

In addition, my gratitude goes to Bond University for accepting me as a PhD Candidate and providing me with a research stipend.

This thesis is dedicated to my family for always being there for me.

To my mother Karin and my father Heinz-Dieter.

To my brother Dirk and his family.

Last but not least, to my wife Ximena.

Thank you for your unconditional love and support.
Contents

<table>
<thead>
<tr>
<th>Preface</th>
<th>III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statement of Original Authorship</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td></td>
</tr>
<tr>
<td>Additional Publications</td>
<td></td>
</tr>
<tr>
<td>Acknowledgements</td>
<td></td>
</tr>
<tr>
<td>List of Figures</td>
<td>XIII</td>
</tr>
<tr>
<td>List of Tables</td>
<td>XV</td>
</tr>
</tbody>
</table>

1. Introduction

1.1. Motivation and statement of problem 16
1.2. Aims and research question 17
1.3. Main contributions 18
1.4. Thesis outline 19

2. Literature Review

2.1. The futures market 22
2.1.1. Types of traders 24
2.1.2. Determination of futures prices 25
2.1.2.1. Investment Assets 25
2.1.2.2. Consumption Assets 26
2.1.2.3. Convenience Yields 26
2.1.2.4. Cost of carry 27
2.1.2.5. Stock Index Forecasting 27
2.1.2.6. Cost of carry for stock index futures 28
2.1.2.7. Risk and Return 29
2.1.3. Technical Analysis ... 29
2.1.4. Random Walk Trading 32
2.1.5. Time Series Analysis .. 33
 2.1.5.1. Regression .. 33
 2.1.5.2. ARIMA/GARCH 35
2.1.6. Time to expiration and futures price volatility 36
2.1.7. Australian SPI 200 .. 37
2.2. Hedging .. 39
 2.2.1. Hedging Principles 39
 2.2.2. Objective of Hedging 40
 2.2.3. Cross Hedging .. 41
 2.2.4. Reasons for Hedging an Equity Portfolio 42
 2.2.5. Dynamic Hedging ... 42
 2.2.6. Hedging with Stock Index Futures 45
2.3. Machine Learning ... 47
 2.3.1. Motivation ... 47
 2.3.2. Artificial Neural Networks 49
 2.3.3. Evolutionary Optimisation Techniques 54
 2.3.4. Hybrid Models ... 55
 2.3.5. Analysed Markets .. 57
 2.3.6. Input Variables .. 59
 2.3.7. Performance Metrics 62
2.4. Conclusion ... 64
 2.4.1. Gaps in the Literature 64
 2.4.2. Research Question and Contribution 65
3. Methodology .. 66
 3.1. Introduction .. 66
 3.2. ANN based hedging .. 69
 3.2.1. Market timing ANN 71
 3.2.2. Hedge ratio estimation ANN 71
3.3. Data ... 72
 3.3.1. Sources of data 73
 3.3.1.1. Content of SIRCA dataset 73
 3.3.1.2. Content of RBA dataset 77
 3.3.2. Backadjusting Futures Data 77
 3.3.2.1. Selecting Rollover Dates 79
 3.3.2.2. The Adjustment of the Price Levels at the Rollover Date 80
 3.3.3. Merging process 83
 3.3.4. Partitioning of data 85
 3.3.5. Cross Hedging 87
 3.4. Hedging Strategies 91
 3.5. Hedge Ratio Estimation 92
 3.6. Evaluation Metrics 93
 3.6.1. Selective Hedging Performance 93
 3.6.2. Statistical Measures 101
 3.6.3. Comparing Hedging Strategies 102
 3.7. Automated Neural Network Training 102
 3.7.1. Inputs .. 105
 3.7.2. Neural Network Architecture 106
 3.7.3. Training method 110
 3.7.4. Outputs 112
 3.8. Limitations 113
 3.8.1. Stock Indices 113
 3.8.2. Neural Networks 114
 3.10. Testable Hypotheses 115

4. Results and Analysis 117
 4.1. Introduction 117
 4.2. ANN Training 119
 4.2.1. Rate of Change: 7 Inputs 120
 4.2.2. Maximum Adverse Excursion: 7 Inputs 122
 4.2.3. Volatility: 7 Inputs 124
4.2.4. Rate of Change: 14 Inputs .. 126
4.2.5. Maximum Adverse Excursion: 14 Inputs 128
4.2.6. Volatility: 14 Inputs .. 130
4.2.7. Selection of ANN architecture 132
4.3. Simulation Portfolios .. 132
4.4. Binary hedging approach .. 135
 4.4.1. Introduction .. 135
 4.4.2. Signal threshold ... 136
 4.4.3. Out-of-sample results S&P/ASX 200 138
 4.4.4. Evaluation of Hedging Metrics 139
 4.4.4.1. Net Profit ... 139
 4.4.4.2. Annualised Return 140
 4.4.4.3. Maximum Drawdown 140
 4.4.4.4. Sharpe Ratio ... 141
 4.4.4.5. Hedging Effectiveness 141
 4.4.4.6. Sortino Ratio ... 141
 4.4.4.7. MAR Ratio ... 141
 4.4.4.8. Ulcer Index ... 142
 4.4.4.9. Ulcer Performance Index 142
 4.4.5. Out-of-sample results cross hedging 142
 4.4.5.1. Materials Sector ... 143
 4.4.5.2. Industrials Sector 146
 4.4.5.3. Consumer Discretionary Sector 148
 4.4.5.4. Financial Sector ... 150
 4.4.5.5. Information Technology Sector 152
4.5. Continuous hedging approach 154
 4.5.1. Introduction .. 154
 4.5.2. Output postprocessing .. 154
 4.5.3. Out-of-sample results S&P/ASX 200 157
 4.5.4. Out-of-sample results cross hedging 159
 4.5.4.1. Materials Sector ... 159
 4.5.4.2. Industrials Sector 162
 4.5.4.3. Consumer Discretionary Sector 164
4.5.4.4. Financial Sector .. 166
4.5.4.5. Information Technology Sector 168
4.6. Summary of results .. 170

5. Conclusion ... 172
5.1. Thesis summary ... 172
5.2. Conclusion regarding the research problem 174
 5.2.1. Conclusion regarding hypothesis 1 175
 5.2.2. Conclusion regarding hypothesis 2 175
 5.2.3. Conclusion regarding the research question 176
5.3. Future Research ... 177

Bibliography ... 179

Appendices ... 194

A. Appendix ... 196
 A.1. Table of Abbreviations 196
List of Figures

2.1. Central research theory and related areas 22
2.2. ASX SPI 200 Index Futures . 37
2.3. June 2010 ASX SPI 200 Futures Contract (YAP) 38
3.1. Methodology Overview . 67
3.2. Stock Portfolio . 69
3.3. Hedge Timing (Example) . 70
3.4. Stock Index Futures Hedging Flow Chart 71
3.5. Hedge Ratio Estimation ANN Flow Chart 72
3.6. Overview of the dataset creation . 73
3.7. Spliced Continuous Contract . 78
3.8. Spliced Contract vs. Back-adjusted Contract 79
3.9. Timing differences between data series 84
3.10. Alignment of datasets . 85
3.11. Data exchange between Wealth-Lab and Matlab software packages . . 103
3.12. Wealth-Lab Plugin Architecture . 104
3.13. Automated ANN training and evaluation cycle 108
3.14. Flow chart of automated ANN training algorithm 109
4.1. Training Performance: ROC - 7 Inputs 121
4.2. Training Performance: MAE - 7 Inputs 123
4.3. Training Performance: Volatility - 7 Inputs 125
4.4. Training Performance: ROC - 14 Inputs 127
4.5. Training Performance: MAE - 14 Inputs 129
4.6. Training Performance: Volatility - 14 Inputs 131
4.7. Diagram of the best performing in-sample ANN 133
4.8. Overview of Sharpe Ratios in out-of-sample period 171
List of Tables

2.1. Input variables used by Stansell & Eakins (2004) 61
3.1. List of letters used to encode futures delivery month 74
3.2. Content of SIRCA dataset . 76
3.3. Content of RBA dataset . 77
3.4. List of Australian sector indices . 90
3.5. List of performance metrics . 100
3.6. Overview of input variables used . 106
4.1. In-Sample Performance ANN - ROC 7 Inputs 120
4.2. In-Sample Performance ANN - MAE 7 Inputs 122
4.3. In-Sample Performance ANN - Volatility 7 Inputs 124
4.4. In-Sample Performance ANN - ROC 14 Inputs 126
4.5. In-Sample Performance ANN - MAE 14 Inputs 128
4.6. In-Sample Performance ANN - Volatility 14 Inputs 130
4.7. Correlation coefficients for (sub-)indices and index futures 134
4.8. In-Sample ANN output vs. one month ahead return 137
4.9. Out-of-sample trading metrics: Binary hedging 138
4.10. Binary ANN hedging strategy return vs. unhedged portfolio return . . . 139
4.11. Out-of-sample cross hedging: materials sector 143
4.13. Out-of-sample cross hedging: industrials sector 146
4.15. Out-of-sample cross hedging: consumer discretionary sector 148
4.16. Statistics ANN-Bin vs. unhedged portfolio return: consumer discretionary sector .. 149
4.17. Out-of-sample cross hedging: financial sector ... 150
4.18. Statistics ANN-Bin vs. unhedged portfolio return: financial sector 151
4.19. Out-of-sample cross hedging: information technology sector .. 152
4.21. Hedging strength vs. ANN forecast ... 155
4.22. Out-of-sample trading metrics: Continuous hedging .. 157
4.23. Continuous ANN hedging strategy return vs. unhedged portfolio return 158
4.25. Statistics ANN-Cont vs. unhedged portfolio return: materials sector 160
4.27. Statistics ANN-Cont vs. unhedged portfolio return: industrials sector 163
4.28. Out-of-sample cross hedging: consumer discretionary sector ... 164
4.29. Statistics ANN-Cont vs. unhedged portfolio return: consumer discretionary sector 165
4.30. Out-of-sample cross hedging: financial sector ... 166
4.31. Statistics ANN-Cont vs. unhedged portfolio return: financial sector 167
4.32. Out-of-sample cross hedging: information technology sector ... 168
4.33. Statistics ANN-Cont vs. unhedged portfolio return: information technology sector 169