Dual-tasking, temporal embedding or having fun:
When does time fly?

Presented by
Sonia Noemi Vilches-Montero

Thesis submitted in partial fulfilment of the requirements of the degree of
Doctor of Philosophy (with coursework component)
Discipline of Marketing

Faculty of Business, Bond University
Queensland, Australia

April 2011
ABSTRACT

Time is a major variable of interest to consumer behaviour theory. However, the debate regarding how to conceptualize and theorize time in consumer research still remains unsolved and a “lack of theoretical development” in the discipline has been acknowledged (Bettany & Gatrell, 2009).

Using two experimental studies, this dissertation moves into an exploration of the “neural-clock model” according to which individuals are expected to generate a decision about the passage of time based on the amount of interval-filling information available in memory. Taken together, findings from these two studies show that subjective time deviates from real time, and time perception is significantly affected by active information processing, time delay and stimulus’ level of enjoyment.

Most important, findings provide evidence for theoretical discussions and new research avenues. Time perception for events past is significantly distorted when subjects are cued to reconstruct and estimate the experience as a whole, as opposed to retrieving and estimating its different subparts. Both studies illustrate that in time perception “the whole is not equal to the sum of its parts”, and this effect is enhanced when duration estimates are produced after a time delay and when subjects perform active stimulus information processing. This is an interesting finding because it provides support for the application of literature in event structure and memory psychophysics regarding reconstruction of physical objects and events into time perception research. Thus, findings show that time perception seems to depend on how individuals reconstruct the experience, and not only on the amount of information stored in memory, as the neural-clock model proposes.

We know that misestimating time has profound ramifications on consumer behaviour, and marketing researchers have dedicated considerable effort to understanding the effects that time perceptions play in consumers’ decision-making. However, very little is known regarding how marketers may distort the subjective experience of time to their own benefit. This dissertation attempts to fill that gap.
STATEMENT OF ORIGINALITY

This thesis is submitted to Bond University in fulfilment of the requirements of the degree of Doctor of Philosophy. This thesis represents my own original work towards this research degree and contains no material which has been previously submitted for a degree or diploma at this University or any other institution, except where due acknowledgement is made.
ACKNOWLEDGEMENTS

My times are in thy hand
Psalm 31:15

I want to give thanks to God my Heavenly Father. The God who is feeding me from my being unto this day (Genesis 48:15). He owns all my ways. Praised be the Lord.

I want to thank my husband Renzo and my children Catalina and Daniel for their love and commitment. Waiting for mum to come home and watching mum working late has become your speciality all these years, and you never complained.

I want to give thanks to my mother and sister for their inexhaustible provision of love and care. No daughter has had a better mum.

I want to thank my friends Ian, Sue, Daniel, Crystal and Allison for being our family in Australia. So many good memories!

I want to thank my supervisor Dr. Mark Spence for being my counsellor and mentor. What a fascinating topic of research this has been. I have fully enjoyed it. You suggested it, you made me love it, and now I do not want to give it up!
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>STATEMENT OF ORIGINALITY</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>iv</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>v</td>
</tr>
<tr>
<td>CHAPTER 1: Time and Time Perception in Consumer Research</td>
<td>1</td>
</tr>
<tr>
<td>1.1 The time perception concept</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Time perception in consumer behaviour</td>
<td>2</td>
</tr>
<tr>
<td>1.3 The structure of this dissertation</td>
<td>5</td>
</tr>
<tr>
<td>CHAPTER 2: Conceptual Overview and Hypotheses Development</td>
<td>9</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>9</td>
</tr>
<tr>
<td>2.2 The nature of time perception: the neural-clock model</td>
<td>10</td>
</tr>
<tr>
<td>2.3 Attention and time perception: the role of active versus passive processing</td>
<td>13</td>
</tr>
<tr>
<td>2.4 Memory and time perception: the role of time delays</td>
<td>18</td>
</tr>
<tr>
<td>2.5 Time perception and event characteristics: enjoyable versus neutral times</td>
<td>22</td>
</tr>
<tr>
<td>2.6 Temporal embedding: recalling segments of an experience</td>
<td>25</td>
</tr>
<tr>
<td>2.7 Summary</td>
<td>29</td>
</tr>
<tr>
<td>CHAPTER 3: Methodological Issues Considered when Designing Study 1</td>
<td>31</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>31</td>
</tr>
<tr>
<td>3.2 Experimental approaches used to study time perceptions</td>
<td>33</td>
</tr>
<tr>
<td>3.3 Methodological considerations and decisions</td>
<td>35</td>
</tr>
<tr>
<td>Within versus between subjects design</td>
<td>36</td>
</tr>
<tr>
<td>Stimulus</td>
<td>38</td>
</tr>
<tr>
<td>Number of intervals and arrangement of interval durations</td>
<td>41</td>
</tr>
<tr>
<td>Method to elicit duration estimates</td>
<td>43</td>
</tr>
<tr>
<td>Dependent variables and measures</td>
<td>45</td>
</tr>
<tr>
<td>Manipulating attentional resources</td>
<td>48</td>
</tr>
<tr>
<td>Manipulating memory performance</td>
<td>49</td>
</tr>
<tr>
<td>Summary</td>
<td>49</td>
</tr>
<tr>
<td>3.4 Pre-tests to determine stimuli and measures</td>
<td>52</td>
</tr>
<tr>
<td>Choosing the audio-visual stimuli</td>
<td>52</td>
</tr>
<tr>
<td>Testing measures for the dependent variables</td>
<td>54</td>
</tr>
<tr>
<td>Procedure</td>
<td>57</td>
</tr>
<tr>
<td>Results and discussion</td>
<td>58</td>
</tr>
<tr>
<td>Summary</td>
<td>60</td>
</tr>
</tbody>
</table>
CHAPTER 4: Study 1 Methodology and Findings 61
4.1 Introduction 61
4.2 Methodology chosen for Study 1 62
 Manipulations and stimuli 63
 Procedure 64
 Measures 67
 Subjects 67
 Manipulation checks 68
4.3 Hypotheses tests and findings 70
 Manipulation checks 70
 Hypothesis testing 72
 i. Dependent variable: duration estimate for the entire series (DES) 72
 ii. Dependent variable: sum of the estimates for each video (SSE) 82
 iii. Dependent variable: error of the duration estimate for each video 86
 iv. Confidence measures: confidence bounds and self-assessed confidence 89
4.4 Summary of findings and discussion 94
 Time perception and cognitive processes 95
 Time perception when having fun 97
 Time perception and event reconstruction 97
 Time perception and primacy/recency effect 98
 Accuracy and confidence in time perception 98
 Need for further research 99

CHAPTER 5: Study 2 Methodology and Findings 101
5.1 Introduction 101
5.2 Methodology chosen for Study 2 102
 Manipulations 102
 Stimulus material 103
 Procedure 104
 Measures 105
 Subjects 106
5.3 Data analysis and findings 106
 Manipulation checks 106
 Memory and duration estimate for the entire series (DES) 108
 Time perception and “the whole (DES) versus the sum its parts (SSE)” 117
 Time perception and temporal embedding 119
 Time perception and confidence bounds 120
 Time perception and self-assessed confidence 121
5.4 Summary of findings and discussion 122

CHAPTER 6: Conclusions and Discussion 127
6.1 The nature of time perception 127
6.2 Summary of findings and discussion 129
6.3 When does time fly?
6.4 Limitations
6.5 Managerial Implications

CHAPTER 7: Avenues for Further Research
7.1 A new paradigm to study time perceptions
7.2 Time perception and event reconstruction
 Event-hierarchy explanation
 Temporal-distance explanation
7.3 Discussion and conclusion

REFERENCES

APPENDICES
APPENDIX 1: Questionnaires used in the pre-test
APPENDIX 2: Sample questionnaire used in Study 1
APPENDIX 3: Sample questionnaire used in Study 2
APPENDIX 4: Bond University Human Research Ethics Committee Approval

LIST OF TABLES
Table 1. Summary of methodological considerations
Table 2. The audio-visual stimuli in the pre-test: clock durations and themes
Table 3. Experimental conditions in Study 1
Table 4. Arrangement of audio-visual stimuli: clock durations and themes
Table 5. Summary of methodological decisions for Study 1
Table 6. Extreme values over 2 standard deviations
Table 7. Identification of outliers (DFFIT technique)
Table 8a. ANOVA Tests of between-subjects effects (2x2x2 factorial design)
Table 8b. Descriptive statistics for ANOVA tests
Table 9. Interaction Effects Analysis: descriptive and t-tests for equality of means.
Table 10. Experimental conditions in Study 2
Table 11. Arrangement of audio-visual stimuli in Study 2
Table 12a. ANOVA tests (2x3 between subjects factorial design)
Table 12b. Descriptive statistics for ANOVA tests. Dependend variable: DES
Table 13. One-way ANOVA post-hoc comparisons using Tukey’s HSD test
Table 14. Interaction effect analysis: descriptive statistics and t-tests equality of means
Table 15.a ANOVA Tests (2x3 factorial design)
Table 15.b Descriptive statistics for ANOVA tests

LIST OF FIGURES

Figure 1. Schematic representation of the neural-clock model 11
Figure 2. Event partonomies comprising “taking family to the theme park” 26
Figure 3. Testing for appropriate measures for the dependent variables: the ruler 55
Figure 4. Testing for appropriate measures for the dependent variables: the table 56
Figure 5. Procedure for Study 1 64
Figure 6. Identification of outliers: OLS solution 76
Figure 7. Interaction effect (task condition by enjoyment) 79
Figure 8. Accuracy and objective confidence for videos 1 and 4 92
Figure 9. Interaction effect (time condition by estimate condition) 113