A Collaboration Framework of Selecting Software Components based on Behavioural Compatibility with User Requirements

by

Lei Wang (BE, MSc)

A Thesis Submitted in Fulfillment of the Requirements for the Degree

Doctor of Philosophy

Gold Coast, Queensland, Australia

November, 2006
Statement of Originality

This dissertation represents the author’s own work and contains no material which has been previously submitted for a higher degree at this University or any other institution, except where due acknowledgement is made.

Signature:

Date:
Abstract

A Collaboration Framework of Selecting Software Components based on Behavioural Compatibility with User Requirements

by

Lei Wang (BE, MSc)

Building software systems from previously existing components can save time and effort while increasing productivity. The key to a successful Component-Based Development (CBD) is to get the required components. However, components obtained from other developers often show different behaviours than what are required. Thus adapting the components into the system being developed becomes an extra development and maintenance cost. This cost often offsets the benefits of CBD. Our research goal is to maximise the possibility of finding components that have the required behaviours, so that the component adaptation cost can be minimised.

Imprecise component specifications and user requirements are the main reasons that cause the difficulty of finding the required components. Furthermore, there is little support for component users and developers to collaborate and clear the misunderstanding when selecting components, as CBD has two separate development processes for them. In this thesis, we aim at building a framework in which component users and developers can collaborate to select components with tools support, by exchanging component and requirement specifications. These specifications should be precise enough so that behavioural mismatches can be detected.
We have defined Simple Component Interface Language (SCIL) as the communication and specification language to capture component behaviours. A combined SCIL specification of component and requirement can be translated to various existing modelling languages. Thus various properties that are supported by those languages can be checked by the related model checking tools. If all the user-required properties are satisfied, then the component is compatible to the user requirement at the behavioural level. Thus the component can be selected. Based on SCIL, we have developed a prototype component selection system and used it in two case studies: finding a spell checker component and searching for the components for a generic e-commerce application.

The results of the case studies indicate that our approach can indeed find components that have the required behaviours. Compared to the traditional way of searching by keywords, our approach is able to get more relevant results, so the cost of component adaptation can be reduced. Furthermore, with a collaborative selection process this cost can be minimised. However, our approach has not achieved complete automation due to the modelling inconsistency from different people. Some manual work to adjust user requirements is needed when using our system. The future work will focus on solving this remaining problem of inconsistent modelling, providing an automatic trigger to select proper tools, etc.
Acknowledgements

First and foremost, I am indebted to my supervisor, Dr. Padmanabhan Krishnan. I would never have accomplished this work without his continuous support and guidance. He has always been available and patient to answer my questions, and committed himself to offering his assistance whenever needed. His enthusiasm and scholarly insights made the process of pursuing my Ph.D. a joyful and fruitful journey.

I would also thank Dr. Michael Rees and Mrs. Stephanie Patching for their kind support during my study at Bond. Michael has presented me with many opportunities to improve myself, while Stephanie has helped me with all the academic issues. Without them I would never be able to focus on my research, and my life in Australia would be harder.

I am grateful to Dr. Daniela Mehandjiska-Stavreva, who took me to Bond University to fulfil my dream. I respect her spirit of never giving up even when she is fighting against serious illness. Her optimistic life attitude can never be learned from books.

Thanks also go to Dr. Luca de Alfaro from UC Santa Cruz for discussing the use of TICC and Mocha, and Xiaowen Huang from Stony Brook University for kindly providing the source code of Mocha. I also want to say “you have done a great job!” to the Alloy development group from MIT. Without these tools my research would never be practical. Another important contribution to my research comes from Yahoo Alloy discussion group, in which I have learned a lot from other Alloy users. They are always willing to answer my questions no matter how naive they are.

I would like to thank the School of Information Technology, Business Faculty for providing me with a four-year scholarship to complete my study, and offering me opportunities to improve my teaching skills. I would also appreciate the financial support and training opportunities from BURCS (Bond University Research and
Consultancy Services). I really enjoy the discussion with my friendly colleagues: Dr. Zhaohao Sun, Dr. Jun Han, Ping and Tan. I appreciate them for creating such a pleasant office atmosphere.

I would also like to thank those people whose names I have not mentioned, but have spent time with me. Thanks all!

Special thanks to Pat’s family for their prayers and support both financially and mentally. Even though Seattle is far away, I still can feel their care and love. Thanks to Dr. Ningping Yu’s family for their friendship, which always makes my heart warm.

My mother and father and my wife have always been sources of great love and encouragement. Their love shaped me into the person I am today. I am grateful to all the rest of my family members, especially my sister, uncle, cousin, for their unconditional support.

Finally, I want to thank Megumi Tanaka, a special person to me, and her whole family, for their love and understanding.
Contents

Statement of Originality ii

Abstract iii

Acknowledgements v

List of Figures xi

List of Tables xiii

List of Programs xiv

1 Introduction 1

1.1 Motivation .. 2
 1.1.1 The Current Widely Applied Practice 2
 1.1.2 Problem Statement ... 3
 1.1.3 Different Approaches 4

1.2 The Proposed Solution .. 7
 1.2.1 A Collaboration Process 7
 1.2.2 The Technologies to Support the Process 10

1.3 Overview of the Methodology 11

1.4 Thesis Outline .. 13
Related Works

2.1 Introduction .. 14

2.2 Background Knowledge 15

2.2.1 Software Component 15

2.2.2 Concept of Interface and Contract 16

2.2.3 Component-Based Development Life Cycle Model 18

2.3 Specifying Component Interfaces 26

2.3.1 Syntactic Level .. 27

2.3.2 Semantic Level ... 28

2.3.3 Protocol Level .. 33

2.3.4 Specifying and Predicting Quality Properties 38

2.4 Component Storage and Retrieval 39

2.4.1 Text-based Encoding and Retrieval 40

2.4.2 Lexical Descriptor-based Encoding and Retrieval 40

2.4.3 Formal Specification-based Encoding and Retrieval 41

2.5 Component Evaluation 42

2.5.1 Evaluation Processes 43

2.5.2 Particular Methods 44

2.6 Existing Component Selection Systems 46

2.7 Component Trader’s Involvement 48

2.8 Summary .. 48

The Framework of Selecting Components based on Collaboration

3.1 Introduction .. 50

3.2 The Proposed Framework 51

3.3 The Collaboration Process 53

3.3.1 Roles .. 54

3.3.2 Artefacts .. 54

3.3.3 Activities ... 54
3.3.4 Workflow .. 56
3.4 The Specification Language and Matching Technique 60
3.5 The Tools and Formalism Support 61
3.6 Summary ... 62

4 Simple Component Interface Language 64
 4.1 Introduction .. 64
 4.2 Design .. 65
 4.2.1 Syntax .. 67
 4.3 Writing Specifications in SCIL 75
 4.3.1 Writing Component Specifications 75
 4.3.2 Writing Requirement Specifications 75
 4.4 SCIL and Transition Systems 76
 4.5 Summary ... 78

5 Implementations .. 80
 5.1 Introduction .. 80
 5.2 Architecture ... 80
 5.3 The SCIL Translator .. 82
 5.3.1 The Compiler .. 83
 5.3.2 Developing Plug-ins 84
 5.4 Component Repository ... 86
 5.5 Web Interface .. 86
 5.6 Summary ... 90

6 Case Studies ... 92
 6.1 Introduction .. 92
 6.2 Case Study 1: Checking Behavioural Compatibility for the Auctioneer
 Component .. 94
 6.3 Case Study 2: Search For A Spell Checker Component 97
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.1 Requirements for the Desired Component</td>
<td>97</td>
</tr>
<tr>
<td>6.3.2 Specifying Components</td>
<td>101</td>
</tr>
<tr>
<td>6.3.3 Searching Components in the Repository</td>
<td>105</td>
</tr>
<tr>
<td>6.3.4 Translating and Model Checking</td>
<td>110</td>
</tr>
<tr>
<td>6.3.5 Results</td>
<td>110</td>
</tr>
<tr>
<td>6.4 Case Study 3: Search COTS Components for a Generic e-Commerce</td>
<td>113</td>
</tr>
<tr>
<td>6.4.1 Search for the Authentication Component</td>
<td>114</td>
</tr>
<tr>
<td>6.4.2 Search for the Catalogue Component</td>
<td>119</td>
</tr>
<tr>
<td>6.4.3 Search for the Shopping-Cart Component</td>
<td>120</td>
</tr>
<tr>
<td>6.5 Discussion</td>
<td>126</td>
</tr>
<tr>
<td>6.6 Summary</td>
<td>129</td>
</tr>
<tr>
<td>7 Conclusion and Future Work</td>
<td>130</td>
</tr>
<tr>
<td>7.1 Main Contributions</td>
<td>131</td>
</tr>
<tr>
<td>7.2 Future Work</td>
<td>132</td>
</tr>
<tr>
<td>A Related Publications</td>
<td>134</td>
</tr>
<tr>
<td>B Simple Component Interface Language Grammar in SableCC</td>
<td>137</td>
</tr>
<tr>
<td>C Auctioneer Component Specification and Its User Requirement</td>
<td>148</td>
</tr>
<tr>
<td>C.1 The SCIL Specification of the Auctioneer Component</td>
<td>148</td>
</tr>
<tr>
<td>C.2 The SCIL Specification of the User Requirement for the Auctioneer</td>
<td>150</td>
</tr>
<tr>
<td>C.3 The RM Translation of the Combined Specification</td>
<td>152</td>
</tr>
<tr>
<td>C.4 The Alloy Translation of the Combined Specification</td>
<td>156</td>
</tr>
<tr>
<td>Bibliography</td>
<td>159</td>
</tr>
</tbody>
</table>
List of Figures

1.1 Adaptation Cost with/without Collaboration .. 10
1.2 Using SCIL as the Bridge to Checking Various Properties 11

2.1 Interfaces, Methods, Contracts and Specifications 17
2.2 Two Development Processes of CBD .. 19
2.3 The Concept Map of Component Selection ... 25

3.1 Structure of the Proposed Framework .. 51
3.2 The Workflow in the Collaboration Process .. 58
3.3 A Scenario of the Collaboration .. 59
3.4 The Comparison of Two Component Searching Processes 63

4.1 Abstract Description of SCIL ... 67
4.2 State Transitions in Auctioneer Component .. 77

5.1 The System Modules ... 81
5.2 The SCIL Translator ... 82
5.3 Compiler Implementation Layers ... 84
5.4 The Use Cases through the Web Interface ... 87
5.5 Screen-shot: Search by Keywords ... 88
5.6 Screen-shot: Search Results by Keywords ... 88
5.7 Screen-shot: View and Modify Specifications 89
5.8 Screen-shot: Name Mapping ... 89
5.9 Screen-shot: Compatibility Checking Result .. 91
5.10 The Flowchart of Using the System .. 91

6.1 Four Spell Checking Scenarios .. 100
6.2 r.a.d.spell Component Use Case Diagram ... 102
6.3 r.a.d.spell Component State Transitions ... 104
6.4 The e-Commerce Application Architecture 114
6.5 Two Scenarios for the Shopping Cart Component 124
List of Tables

6.1 Component Distribution in the Sample Repository 93
List of Programs

2.1 Auctioneer Interface in IDL .. 27
2.2 Code Fragment of Auctioneer Purchase Method in JML 29
2.3 Code Fragment of Auctioneer Purchase Method in OCL 31
2.4 Code Fragment of Auctioneer Purchase Method in Alloy 32
2.5 Code Fragment in Reactive Modules 35
4.1 Enumeration Type in SCIL .. 68
4.2 Structured Type in SCIL .. 69
4.3 Services of the Auctioneer Component 70
4.4 Protocol of the Auctioneer Component 72
4.5 A Required Scenario for the Auctioneer Component 73
4.6 Required Properties for the Auctioneer Component 74
4.7 User Environment for the Auctioneer Component 76
6.1 Type Translation .. 94
6.2 Sell Service Translation .. 95
6.3 Check best_story Scenario in RM 95
6.4 Check a Property in RM .. 96
6.5 Requirement Specification for Spell Checker Component 98
6.6 Specification of r.a.d.spell Component 103
6.7 Specification of ClSpell component 106
6.8 Specification of ChadoSpellText Component 107
6.9 Translation of a Scenario to RM ... 111
6.10 Translation of Properties to RM and Alloy 112
6.11 Requirement for Authentication Component 115
6.12 Specification of an Authentication Component 117
6.13 Requirement Specification for Catalogue Component 121
6.14 Requirement Specification for Shopping-Cart Component 122
6.15 Specification of JavaCart Component 125