APPENDIX A

Correlation of Ki-67 Immunohistochemistry with Oncotech Extreme Drug Resistance Assay Profiles in Melanoma (Abstract)

Title: Correlation of Ki-67 Immunohistochemistry with Oncotech Extreme Drug Resistance Assay Profiles in Melanoma

Aaron J Berger 1, Malini Harigopal 1, Kelly Martens 1, Lori A Charette 1 Harriet Kluger 1 and David L Rimm 1, 1 Department of Pathology, Yale University School of Medicine, New Haven, CT.

Background: Toward the goal of personalized medicine, in vitro drug sensitivity assays have been developed to help clinicians tailor specific treatment regimens. The “Extreme Drug Resistance (EDR) Assay” offered by Oncotech Inc. (Tustin, CA) exposes the patient’s cancer cells to extreme levels of chemotherapeutic drug, and assesses proliferation by 3H-thymidine incorporation. Ki-67 has been used as a mechanism to assess proliferation rate and thus, aggressiveness of tumors. We hypothesize that Ki-67 expression will be correlated with extreme drug resistance. Here we test this hypothesis and determine the relationship between EDR and initial recurrence in a cohort of 100 malignant melanoma specimens.

Design: Fresh samples from 100 specimens seen in the Yale University Department of Pathology between 1995 and 2002 were tested for drug resistance by the EDR assay. The formalin-fixed, paraffin-embedded melanoma blocks from each specimen were collected to produce a tissue microarray (0.6 mm cores, twofold redundancy). The majority of cases were metastatic (92), followed by local recurrences (7), and a primary (1). Data from the Oncotech EDR Assay was available for the following drugs: 5FU (69), 5FU+Leucovorin (70), Carmustine (83), Cisplatin (83), Dacarbazine (76), Doxorubicin (70), Etoposide (65), Mitomycin C (65), Vinblastine (72). Immunohistochemistry was performed on the tissue microarray slide with a purified mouse anti-human monoclonal antibody to Ki-67 (Clone B56, BD Pharmingen, San Jose, CA). The slide was then scored for percent positive nuclei by two independent observers (M.H. and A.B.). Statistical analyses were performed using JMP 5.0.1 (SAS Institute Inc., Cary, NC).

Results: Ninety-three percent of the histospots were scoreable. The distribution of Ki-67 scores was bimodal so nominal classes were constructed dividing the population into high and low level Ki-67 expression. Scores for the EDR assay are provided in 3 groupings (extreme, intermediate, and low drug resistance). Neither the EDR Assay results, nor the Ki-67 score, were able to distinguish aggressive from non-aggressive primary melanomas (i.e., time to first recurrence after initial diagnosis). The survival curve for the 5FU+Leucovorin EDR assay showed a significant correlation with primary tumor aggressiveness (p=0.0088), though cohort numbers were small (EDR=1, IDR=11, LDR=25). Only the assay for the combination regimen 5FU+Leucovorin correlated with Ki-67 expression (p=0.02).

Conclusion: Although Ki-67 and EDR are both predictors of aggressive tumors, no correlation was found between Ki-67 and drug resistance in eight of nine drug assays tested. Furthermore, no relationship was found between Ki-67 expression and primary tumor aggressiveness or EDR and primary tumor aggressiveness. However, the specimens examined were predominantly metastatic tumors where high levels of Ki-67 expression are more common. Finally, the absence of a relationship between either Ki-67 and EDR and the time to first recurrence may be overshadowed by the value of either test to predict response to therapy. Future studies will include this analysis upon collection of treatment and outcome data.
APPENDIX B

Concise Tabulated Oncotech EDR Results Data

<table>
<thead>
<tr>
<th>Assays</th>
<th>EDR</th>
<th>%EDR</th>
<th>IDR</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>5FU_LEUCOVIN</td>
<td>70</td>
<td>4</td>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>ALPHA_IFN</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>BLEOMYCIN</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CARMUSTINE</td>
<td>83</td>
<td>16</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>CISPLATIN</td>
<td>83</td>
<td>9</td>
<td>11</td>
<td>24</td>
</tr>
<tr>
<td>CSPLTN_GEMCTABINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>CYCLOPHOSPHAMIDE</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>DACTARBAZLINE</td>
<td>76</td>
<td>18</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>DOXORUBICIN</td>
<td>70</td>
<td>8</td>
<td>11</td>
<td>8</td>
</tr>
<tr>
<td>ETOPOSIDE</td>
<td>65</td>
<td>4</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>FLUOROURACIL</td>
<td>69</td>
<td>4</td>
<td>6</td>
<td>16</td>
</tr>
<tr>
<td>GEMCITABINE</td>
<td>3</td>
<td>1</td>
<td>33</td>
<td>1</td>
</tr>
<tr>
<td>IFOSFAMIDE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IL2</td>
<td>7</td>
<td>7</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>IL2andIFN</td>
<td>6</td>
<td>6</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>MITOMYCIN_C</td>
<td>65</td>
<td>10</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>MITOXANTRONE</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NAVELBINE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>NVLBNE_TXTRE</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>P53</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TAXOL</td>
<td>2</td>
<td>1</td>
<td>50</td>
<td>1</td>
</tr>
<tr>
<td>TAXOTERE</td>
<td>4</td>
<td>2</td>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>TEMOZOLOMIDE</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Extreme Drug Resistance (EDR)

Extreme Drug Resistance (EDR) indicates that tumor cell growth was virtually unaffected by the high chemotherapeutic agent exposure. Data published in the April 1990 edition of the Journal of the National Cancer Institute (JNCI) and other published data show that patients had less than 1% chance of responding to EDR agents.

Intermediate Drug Resistance (IDR) indicates moderate tumor growth. In published studies, patients treated with agents in the IDR category had response rates that were about half of the rates reported in the medical literature.

Low Drug Resistance

Low Drug Resistance (LDR) indicates that tumor cell proliferation was inhibited by the tested agent and that tumor cells demonstrated less than median growth. Patients treated with agents in the LDR category had response rates that were approximately 1 1/2 to 2-fold greater than the literature reported rates in published studies.

Literature Response Rate

Determined from an extensive review of clinical trials in which each drug was administered as single agent therapy to specific tumor type.

Assay Predicted Response Probability

Derived from an algorithm involving in vitro tumor cell proliferation, literature response rate, patient treatment status, and a comparison with a growing database of over 80,000 in vitro assays, in accordance with the Bayesian mathematical model.

EDR® Assay Features and Benefits

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accurate</td>
<td>- Over 99% accuracy for identifying ineffective (resistant) agents
- Independent of host factors</td>
</tr>
<tr>
<td>Cost Effective</td>
<td>- Avoids direct costs of ineffective therapies
- Avoids costs of managing treatment related morbidity</td>
</tr>
<tr>
<td>Humane</td>
<td>- Spares patients unnecessary toxicity
- Saves valuable treatment time</td>
</tr>
<tr>
<td>Reliable</td>
<td>- Avoids the potential of inducing cross resistance to other effective agents
- Approximately 90% of tumor specimens submitted yield successful assay results</td>
</tr>
<tr>
<td>Fast</td>
<td>- Test results are available in 7 days</td>
</tr>
</tbody>
</table>
APPENDIX D Formatted Melanoma Patient Data

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFIRSTNAME</td>
<td>S96-13563</td>
</tr>
<tr>
<td>Death Date</td>
<td>2/20/1999</td>
</tr>
<tr>
<td>MRUN</td>
<td></td>
</tr>
</tbody>
</table>

Initial Diagnosis

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary Anatomical Site</td>
<td>Leg</td>
</tr>
<tr>
<td>Stage at Dx</td>
<td>III</td>
</tr>
<tr>
<td>Primary Histology</td>
<td>2</td>
</tr>
<tr>
<td>Primary Breslow</td>
<td>III-IV</td>
</tr>
<tr>
<td>Primary Clark</td>
<td>N</td>
</tr>
<tr>
<td>Primary Ulceration</td>
<td>nearly absent</td>
</tr>
<tr>
<td>Primary TIL</td>
<td>M</td>
</tr>
<tr>
<td>Primary Micro Satellites</td>
<td>not seen</td>
</tr>
<tr>
<td>Date of Initial Dx</td>
<td>12/90</td>
</tr>
<tr>
<td>Yr of Initial Dx</td>
<td>1990</td>
</tr>
</tbody>
</table>

Imaging Studies

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT Scans (UC San Diego)</td>
<td>Increase</td>
</tr>
<tr>
<td>4/1/93 Gallium Scan</td>
<td></td>
</tr>
<tr>
<td>PET Scans</td>
<td></td>
</tr>
<tr>
<td>5/4/93 increased bibasilar densities</td>
<td></td>
</tr>
<tr>
<td>CXR</td>
<td></td>
</tr>
<tr>
<td>4/20/93 CTCAP</td>
<td>neg</td>
</tr>
<tr>
<td>7/86 CTCAP</td>
<td>2 enlarged LN retroperitoneal area</td>
</tr>
<tr>
<td>MRTs</td>
<td></td>
</tr>
<tr>
<td>7/96 Brain MRI</td>
<td>flp* 2 sm lesions close to original rescx</td>
</tr>
<tr>
<td>site</td>
<td></td>
</tr>
<tr>
<td>9/96 flp: no residual ds</td>
<td></td>
</tr>
</tbody>
</table>

Treatment Information

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Tx Start Date</td>
<td>5/3/93 (SA) WE R ankle recurr, Pelvic &</td>
</tr>
<tr>
<td>Initial Treatment</td>
<td>Inguinal lymphadenectomies</td>
</tr>
<tr>
<td>5/93 MSKCC adj vacc prot discussed w/ pt, pt did not pursue</td>
<td></td>
</tr>
<tr>
<td>SE's</td>
<td></td>
</tr>
</tbody>
</table>

Subsequent Treatments

<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/25/96 (SA) R ankle WE + ISO PERF w/ CARB</td>
<td></td>
</tr>
<tr>
<td>Specnum</td>
<td>1996070785</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
</tr>
<tr>
<td>ASSAYTYPE_EDR</td>
<td>100</td>
</tr>
<tr>
<td>SFU_LEUCOVARN_EDR</td>
<td>ALPHA</td>
</tr>
<tr>
<td>IFN_EDR BLEOMYCIN_EDR</td>
<td>LDR</td>
</tr>
<tr>
<td>CARMUSTINE_EDR</td>
<td></td>
</tr>
<tr>
<td>CISPLATIN_EDR</td>
<td>LDR</td>
</tr>
<tr>
<td>Cipltn_Gemcitabine_EDR</td>
<td>LDR</td>
</tr>
<tr>
<td>CYCLOPHOSPHAMIDE_EDR</td>
<td></td>
</tr>
<tr>
<td>DACARBANINE_EDR</td>
<td></td>
</tr>
<tr>
<td>DOXORUBICIN_EDR</td>
<td>LDR</td>
</tr>
<tr>
<td>ETOPOSIDE_EDR</td>
<td>LDR</td>
</tr>
<tr>
<td>FLUOROURACIL_EDR</td>
<td>LDR</td>
</tr>
<tr>
<td>GEMCITABINE_EDR</td>
<td>LDR</td>
</tr>
<tr>
<td>IFOSFAMIDE_EDR</td>
<td></td>
</tr>
<tr>
<td>MITOMYCIN C_EDR</td>
<td></td>
</tr>
<tr>
<td>MITOXANTRONE_EDR</td>
<td>LDR</td>
</tr>
<tr>
<td>NAVELBINE_EDR</td>
<td></td>
</tr>
<tr>
<td>NVLBNE_TXTRE_EDR</td>
<td>TAXOL_EDR</td>
</tr>
<tr>
<td>TAXOTERE_EDR</td>
<td></td>
</tr>
<tr>
<td>TEMOZOLOMIDE_EDR</td>
<td></td>
</tr>
<tr>
<td>VINBLASTINE_EDR</td>
<td>LDR</td>
</tr>
<tr>
<td>SFU_LEUCOVARN_PCI</td>
<td>99</td>
</tr>
<tr>
<td>ALPHainterFERON_PCI</td>
<td></td>
</tr>
<tr>
<td>BLEOMYCIN_PCI</td>
<td></td>
</tr>
<tr>
<td>CARMUSTINE_PCI</td>
<td>99</td>
</tr>
<tr>
<td>CISPLATIN_PCI</td>
<td>91</td>
</tr>
<tr>
<td>Cipltn_Gemcitabine_PCI</td>
<td></td>
</tr>
<tr>
<td>CYCLOPHOSPHAMIDE_PCI</td>
<td></td>
</tr>
<tr>
<td>DACARBANINE_PCI</td>
<td>89</td>
</tr>
<tr>
<td>DOXORUBICIN_PCI</td>
<td>99</td>
</tr>
<tr>
<td>ETOPOSIDE_PCI</td>
<td>93</td>
</tr>
<tr>
<td>FLUOROURACIL_PCI</td>
<td>98</td>
</tr>
<tr>
<td>GEMCITABINE_PCI</td>
<td></td>
</tr>
<tr>
<td>IFOSFAMIDE_PCI</td>
<td></td>
</tr>
<tr>
<td>MITOMYCIN C_PCI</td>
<td>90</td>
</tr>
<tr>
<td>MITOXANTRONE_PCI</td>
<td></td>
</tr>
<tr>
<td>NAVELBINE_PCI</td>
<td></td>
</tr>
<tr>
<td>NAVELBINE_TXTRE_PCI</td>
<td></td>
</tr>
<tr>
<td>TAXOL_PCI</td>
<td></td>
</tr>
<tr>
<td>TAXOTERE_PCI</td>
<td></td>
</tr>
<tr>
<td>TEMOZOLOMIDE_PCI</td>
<td></td>
</tr>
<tr>
<td>VINBLASTINE_PCI</td>
<td>86</td>
</tr>
</tbody>
</table>
Data from Kelly’s Excel Sheet

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Adjuvant Tx</td>
<td>none</td>
<td>TTF T1R</td>
</tr>
<tr>
<td>Months to Recurrence</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>Local vs. Distant</td>
<td>local (R ankle) & reg</td>
<td></td>
</tr>
<tr>
<td>Tx 1st Rec</td>
<td></td>
<td>surg</td>
</tr>
<tr>
<td>Response to T1R</td>
<td></td>
<td>progress</td>
</tr>
<tr>
<td>Tx 2nd Rec</td>
<td></td>
<td>surg, iso perf/CA RB</td>
</tr>
<tr>
<td>Response to T2R</td>
<td></td>
<td>progress</td>
</tr>
<tr>
<td>TTF T2R</td>
<td>22</td>
<td>whole RT to brain</td>
</tr>
<tr>
<td>Tx 3rd Rec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tx 4th Rec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tx 5th Rec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response to T3R</td>
<td></td>
<td>TTF T3R</td>
</tr>
<tr>
<td>Response to T4R</td>
<td></td>
<td>TTF T4R</td>
</tr>
<tr>
<td>Tx 6th Rec</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response to T5R</td>
<td></td>
<td>TTF T5R</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>f18</td>
</tr>
</tbody>
</table>
Assay Specimen Preparation Guidelines

Solid Tumor (including Lymphoma)

- Obtain fresh biopsy specimen. Do not mince, fix or freeze specimen.
- Rinse specimen in sterile saline or lactated Ringer’s solution.
- Immediately place sample into the inner specimen transport vial which contains Oncotech transport media.
- In the absence of Oncotech transport media, use sterile lactated Ringer’s solution or RPMI 1640.
- Place specimen vial into center of Oncotech box. Place ice pack on top of vial assembly. Enclose completed requisition form.
- Place closed box into Federal Express Diagnostic Pack for shipment.
- Call 1-800-ONCOTECH for specimen pick up.

Important Reminders:

- Refrigerate transport vial until use.
- Freeze Oncotech transport box at least 24 hours before use.
- Patients must not have had chemotherapy or radiation therapy within 3 weeks of specimen collection.

Selected Oncotech EDR® Assay Standard Test Panels*

BREAST
1. Doxorubicin
2. Cyclophosphamide
3. Taxol
4. Fluorouracil
5. Neovastine
6. Taxotere
7. Gemcitabine
8. Cisplatin

COLON
1. Fluorouracil
2. Mitomycin
3. 5 FU + Leucovorin
4. 5 FU + Irinotecan
5. Oxaliplatin
6. Topotecan
7. Mitomycin C

ENDOMETRIAL
1. Cisplatin
2. Taxotere
3. Doxorubicin
4. Ifosfamide
5. Etoposide
6. Cyclophosphamide
7. Topotecan

KIDNEY
1. Interferon 2
2. Alpha Interferon
3. Fluorouracil
4. Gemcitabine
5. Doxil
6. Vinblastine
7. Interferon + Vinblastine
8. Mitomycin C
9. Cyclophosphamide

LUNG (Non-Small Cell)
1. Carboplatin
2. Taxol
3. Neovastine
4. Etoposide
5. Gemcitabine
6. Topotecan
7. Cisplatin
8. Taxotere

LUNG (Small Cell)
1. Cisplatin
2. Taxol
3. Gemcitabine
4. Etoposide
5. Topotecan
6. Doxorubicin
7. Neovastine
8. Irinotecan

MELANOMA
1. Cisplatin
2. Temazolomide
3. Vinblastine
4. Taxol
5. Gemcitabine
6. Topotecan
7. Neovastine + Etoposide
8. Alpha Interferon
9. Carmustine

OVARIAN
1. Carboplatin
2. Taxol
3. Topotecan
4. Etoposide
5. Gemcitabine
6. Taxol
7. Taxotere
8. Cyclophosphamide
9. Cisplatin
10. Cisplatin + Gemcitabine

SARCOMA (Soft Tissue)
1. Doxorubicin
2. Ifosfamide
3. Temazolomide
4. Cisplatin
5. Taxotere
6. Gemcitabine
7. Topotecan

SQUAMOUS (Cervix)
1. Ifosfamide
2. Vinblastine
3. Cisplatin
4. Taxol
5. Fluorouracil
6. Mitomycin C
7. Topotecan

STOMACH
1. Fluorouracil
2. Mitomycin C
3. Doxorubicin
4. Cisplatin
5. Etoposide
6. Gemcitabine
7. Taxol

UNKNOWN PRIMARY
1. Cisplatin
2. Doxorubicin
3. Fluorouracil
4. Cyclophosphamide
5. Taxol
6. Topotecan
7. Etoposide

Updated October 2002
References

Committee on Cancer Staging system for cutaneous melanoma.” *Journal of Clinical Oncology.* 19: 3635-3648.

Baldi A., Santini D., Russo P., Catricala, C., Amantea, A., Picardo, M., Tatangelo,

Berelyn, D.E. 1957. “Recent Developments in Piaget’s Work.” British Journal of Educational Psychology, XXVII (Feb) 1-123.

Sensitivity by the Differential Staining Cytotoxicity (DiSC) and Colony-Forming Assays.” *British Journal of Cancer* 55: 429.

based Semiautomatic Colorimetric Assay: Assessment of Radiosensitivity.”

Semiautomatic Colorimetric Assay: Assessment of Chemosensitivity Testing.”

humanized monoclonal anti-vascular endothelial growth factor (VEGF) antibody
in patients with metastatic melanoma.” Proceedings of the American Society of
Clinical Oncology 22: 2837a.

Cascinelli, N., Morabito, A., Santinami, M., MacKie, R. M., Belli F. and on behalf of the
WHO Melanoma 1998 Programme. “Intermediate or delayed dissection of
regional lymph nodes in patients with melanoma of the trunk: A randomized

3645-3646.

biochemotherapy as a standard of care in advanced melanoma.” Melanoma
Research 12: 381-387.

Chao, C., Wond, G. L., Ross M. I., Reintgen, D. S., Noyes, R. D., Cerrito, P. B.,
“Patterns of early recurrence after sentinel lymph node biopsy for melanoma.”
American Journal Surgery 184: 520-525.

on cutaneous and noncutaneous melanoma: A summary of 84,836 cases from the

Charles, C. A., Yee, V. S., Dusza, S. W. 2005. “Variation in the diagnosis, treatment, and
management of melanoma in situ: a survey of US dermatologists.” Archives in
Dermatology 141: 723-729.

1997. “Automated and quantitative immunocytochemical assays of Bcl-2 protein

Chen, Y., Wang, Y., Xu, W. 2005 “Analysis on the mechanism of Helicobacter pylori-
induced apoptosis in gastric cancer cell line BGC-9823.” International Journal of
Molecular Medicine 16: 741-745.

[(123)I]-VEGF (165) as a potential tumor marker.” Nuclear Medical Biology 32: 431-436.

Deconti, R.C. 2001. Moffitt Cancer Center and Research Institute, University of South Florida: Phase I/II Study of Adjuvant Radiotherapy plus Interferon-Alfa in
Patients with Stage III or Recurrent Melanoma (Summary last modified 10/2001). MCC-1143, clinical trial, closed 7/19/2001.

Dessureault, S., Soong, S-J., Ross, M. I., Thompson, J. F., Kirkwood, J. M., Gershenwald, J. E., Coit, D. G., McMasters, K. M., Balch, C. M., Reintgen, D; American Joint Committee on Cancer (AJCC) Melanoma Staging Committee. Improved staging of node-negative patients with intermediate to thick melanomas (> 1 mm) with the use of lymphatic mapping and sentinel node biopsy.” Annals of Surgical Oncology 8: 749-751.

Elledge, R.M., Clark, G. M., Thant, H. M., Belt, R., Maguire, Y. P., Brown, J., Bartels,

Freemantle, N., Mason, F. 1999. “Not playing with a full DEC; why development and evaluation committee methods for appraising new drugs may be inadequate.”

Grace, M. 1999. NICE. *British Dental Journal* 186; 481

http://www.virtualtrials.com/draassay.cfm

Guerry, D., Elder, D., Ming, M., Melanoma Program and Pigmented Lesion Study Group, Abramson Cancer Center, University of Pennsylvania. 2003. (Abstract) First International Melanoma Research Congress.

EDR Assay and Clinical Outcomes for Ovarian Cancer Patients." *Gynecological Oncology* 87: 8-16.

Jaeschke, R., Guyatt, G. H., Sackett, D. L. 1994. “Users’ Guides to the Medical Literature III. How to Use and Article About a Diagnostic Test. B. What are the
Results and Will They Help Me in Caring for My Patients?” *Journal of the American Medical Association* 271: 703-707.

Kaufmann, R. 2001 “Surgical management of primary melanoma.” Clinical Experiences in Dermatology 25: 476-481.

Lafuma, A., Grob, J. J. 2003. “Cost-effectiveness of interferon-α2 as adjuvant therapy...

effects of drugs: effects of drugs: the case of melphalan.” Cancer Chemotherapy
and Pharmacology [Epub ahead of print]

Luria, S.E., Delbruck, M. 1943. “Mutations of Bacteria From Virus Sensitivity to

melanoma to regional lymphatic basins.” Journal of Surgical Oncology
6(4):189-199.

Maenpaa, J.U., Heinonen, E., Hinkka, S.M., Karnani, P., Klemi, P.J., Korpijaakko, T.A.,
subrenal capsule assay in selecting chemotherapy for ovarian cancer: A
prospective randomized trial.” Gynecological Oncology 57: 294-298.

Magalhães, P. P., Queiroz, D. M., Barbosa, D. V., Rocha, G. A., Mendes, E. N., Santos,
A., Corrêa, P.R., Rocha, A. M., Martins Teixeira, L., de Oliveira, C. A. 2002
“Helicobacter pylori Primary Resistance to Metronidazole and Clarithromycin in

Malferttheiner, P., Sipponen, P., Naumann, M., Moayyedi, P., Megraud, F., Xiao, S.D.,
Sugano, K., Nyren, O., Lejondal: H. pylori-Gastric Cancer Task Force
“Helicobacter pylori Eradication Has the Potential to Prevent Gastric Cancer: A
State-of-the-Art Critique.” American Journal of Gastroenterology 100: 2100-
2015.

Pathology.” Nature Immunology 2: 816-822.

Marchall, E.K. Jr. 1964. “Historical Perspectives in Chemotherapy.” Advances in
Chemotherapy 1:1.

Mariott, J.B., Clarke, I. A. Shah, K., Dredge, K., Muller, G., Stirling, D., Dalgleish, A. G.
2002. “Thalidomide and its analogues have distinct and opposing effects on
TNF-alpha and TNFR2 during co-stimulation of both CD4(+) and CD8(+)
T cells.” Clinical Experimental Immunology 130: 75-84.

replicative capacity of human central memory T cells.” *Journal of Immunology* 16: 205-212.

National Cancer Institute 2002. Available at
http://www.nci.nih.gov/cancerinfo.pdq/treatment/melanoma/healthprofessional/

Oncotech. 2003a. “Oncotech Increases Sales Force to Support Growing Physician and Hospital Base.” Mimeograph, Oncotech, Red Hill Avenue, Tustin, CA.

Roberts, D.L., Anstey, A.V., Barlow, R.J., Cox, N.H., Newton Bishop, J.A., Corrie, P.G., Evans, J., Gore, M.E., Hall, P.N., Kirkham, N.; British Association of...

Sanders, W.E., Sanders, C. C. “Do in vitro antimicrobial susceptibility tests accurately predict therapeutic responsivness in infected patients?” In Significance of Medical Microbiology in the Care of Patients. Ed: Lorian, Baltimore, Williams & Wilkins: 325.

Skipper, H.E. 1986. “Critical Variables in the Design of Combination Chemotherapy Regimens to be Used Alone or in Adjuvant Setting.” Colloque INSERM 137: 11.

Sondak, V.K., Bertelsen, C. A., Tanigawa, N. Sondak, V.K., Bertelsen, C.A., Tanigawa,

western-style clinic in Ho Chi Minh City.” *Social Science and Medicine* [Epub ahead of print]

Tranum, B. L., Dixon, D., Quagliana, J., Neidhart, J., Balcerzak, S. P., Costanzi, J. H.,

made Ecotopes by Triatoma dididiata (Latreille, 1811) in Costa Rica.” *Memorial Institute Oswaldo Cruz, Rio de Janiero* 96: 659-660.

