Physiological demands of law enforcement occupational tasks in Australian police officers

Amy Decker
Bond University

Rob Orr
Bond University, rorr@bond.edu.au

Rodney Pope
Bond University, Rodney_Pope@bond.edu.au

Ben Hinton
New South Wales Police

Follow this and additional works at: http://epublications.bond.edu.au/tru_conf

Part of the Defense and Security Studies Commons, Military and Veterans Studies Commons, and the Physiology Commons

This work is licensed under a Creative Commons Attribution-No Derivative Works 4.0 License.
PHYSIOLOGICAL DEMANDS OF LAW ENFORCEMENT OCCUPATIONAL TASKS IN AUSTRALIAN POLICE

1Amy Decker, 1,2Robin M Orr, 1,2Rodney Pope & 3Benjamin Hinton
1 Faculty of Health Sciences and Medicine, Bond University 2 Tactical Research Unit, Bond University 3 New South Wales Police Force, Sydney, NSW, Australia

Email: rorr@bond.edu.au

BLUF
The routine operational tasks attended by police officers can place high demands on their cardiorespiratory systems even during seemingly sedentary tasks, like driving, where heart rates can breach maximum predicted values.

INTRODUCTION
Research suggests that law enforcement is primarily a sedentary occupation.[1,2] However, officers may have to respond rapidly to unpredictable situations[3] and this can dramatically increase their physiological loads.[4] Police officers are twice as likely to develop cardiovascular disease when compared to the general population[5]

The aim of this study was to investigate the physiological demands placed on Australian state police officers carrying out operational tasks.

METHODS
A cross sectional study design was used to investigate the physiological stress associated with operational tasks routinely performed by 40 uniformed police officers (mean ± SD age=33.58 ± 7.78 yrs, height=177.70 ± 7.28 cm, weight=85.68 ± 14.52 kg, yrs of service=6.74 ± 6.29 yrs).

Recruited from nine different police stations, and following a familiarization session, each officer completed two to four consecutive work shifts wearing a monitoring harness and data-logging device, with heart rate (HR) collected via a 2-lead ECG from the Equivital (Equivital Eq-2, Hidalgo, UK).

Non-identifiable data on task types undertaken by these police officers during shifts were extracted from a Computer Aided Dispatch (CAD) system.

Data from the Equivital system were imported, synchronised and merged into VivoSense (v2.7, Vivonoetics, USA) and then, with the CAD data, imported into SPSS (v20).

The top four most frequently attended task types were then identified and subjected to further analyses. Differences in HR, %HR maximum and respiratory rates (RR) between tasks were examined using ANOVA. Significance was set at .05, a priori.

Ethics approval for the study was given by the Bond University Human Research Ethics Committee (RO 1893).

RESULTS

Table 1. Physiological measures from the top four tasks:

<table>
<thead>
<tr>
<th>Task</th>
<th>HR Mean ± SD (Range) BPM</th>
<th>%HR Max Mean ± SD (Range) %</th>
<th>RR Mean ± SD (Range) Breaths/minute</th>
<th>Duration Mean ± SD (Range) Minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check bonafides</td>
<td>86 ± 12.79 (58-204)</td>
<td>47 ± 7.18 (39-111)</td>
<td>23 ± 5.60 (10-39)</td>
<td>14 ± 11.05 (1-46)</td>
</tr>
<tr>
<td>Driving urgently</td>
<td>91 ± 17.20 (48-198)</td>
<td>50 ± 9.35 (40-115)</td>
<td>24 ± 6.12 (12-39)</td>
<td>5 ± 5.84 (1-38)</td>
</tr>
<tr>
<td>Attending a concern for welfare</td>
<td>87 ± 10.44 (40-198)</td>
<td>47 ± 6.41 (53-111)</td>
<td>22 ± 5.52 (18-27)</td>
<td>11 ± 10.43 (1-44)</td>
</tr>
<tr>
<td>Attending a domestic incident</td>
<td>92 ± 15.97 (40-214)</td>
<td>49 ± 8.78 (40-116)</td>
<td>22 ± 3.83 (16-28)</td>
<td>23 ± 30.09 (2-134)</td>
</tr>
</tbody>
</table>

DISCUSSION
Police officers endure numerous physiological challenges throughout their working day and on occasions can have heart rates exceeding maximum predicted heart rates.

This cardiovascular strain is of concern given their greater risk of cardiovascular disease.

PRACTICAL APPLICATION
Strength and conditioning coaches need to ensure active steps are taken to develop, maintain and monitor cardiovascular health in conjunction with other forms of performance conditioning when training police officers.

REFERENCES