Predicting Connectivity in Wireless Ad Hoc Networks

Henry Larkin
BIT (Hons)

A dissertation submitted in fulfilment of the requirements of the degree of Doctor of Philosophy for the School of Information Technology, Bond University

1st November 2005

© Copyright 2005 by Henry David Larkin
Statement of Originality

The material in this thesis has not been previously submitted for a degree or diploma in any university. To the best of my knowledge this thesis contains no material previously published or written by another person except where due acknowledgement is made in the thesis itself.

Henry Larkin

Date:
Summary

The prevalence of wireless networks is on the increase. Society is becoming increasingly reliant on ubiquitous computing, where mobile devices play a key role. The use of wireless networking is a natural solution to providing connectivity for such devices. However, the availability of infrastructure in wireless networks is often limited. Such networks become dependent on wireless ad hoc networking, where nodes communicate and form paths of communication themselves. Wireless ad hoc networks present novel challenges in contrast to fixed infrastructure networks. The unpredictability of node movement and route availability become issues of significant importance where reliability is desired.

To improve reliability in wireless ad hoc networks, predicting future connectivity between mobile devices has been proposed. Predicting connectivity can be employed in a variety of routing protocols to improve route stability and reduce unexpected drop-offs of communication. Previous research in this field has been limited, with few proposals for generating future predictions for mobile nodes. Further work in this field is required to gain a better insight into the effectiveness of various solutions.

This thesis proposes such a solution to increase reliability in wireless ad hoc routing. This research presents two novel concepts to achieve this: the Communication Map (CM), and the Future Neighbours Table (FNT). The CM is a signal loss mapping solution. Signal loss maps delineate wireless signal propagation capabilities over physical space. With such a map, connectivity predictions are based on signal capabilities in the environment in which mobile nodes are deployed. This significantly improves accuracy of predictions in this and in previous research. Without such a map available, connectivity predictions have no knowledge of realistic spatial transmission ranges.

The FNT is a solution to provide routing algorithms with a predicted list of future periods of connectivity between all nodes in an established wireless ad hoc network. The availability of this information allows route selection in routing protocols to be greatly improved, benefiting connectivity. The FNT is generated from future node positional
information combined with the CM to provide predicted signal loss estimations at future intervals. Given acceptable signal loss values, the FNT is constructed as a list of periods of time in which the signal loss between pairs of nodes will rise above or fall below this acceptable value (predicted connectivity). Future node position information is ideally found in automated networks. Robotic nodes commonly operate where future node task movement is developed and planned into the future, ideal for use in predicted connectivity. Non-automated prediction is also possible, as there exist some situations where travel paths can be predictable, such as mobile users on a train or driving on a highway. Where future node movement is available, predictions of connectivity between nodes are possible.

Detailed analysis of the two proposed concepts are presented in this thesis. Comparisons with existing prediction algorithms illustrate that employing a signal loss map (the CM) vastly improves the accuracy of predictions. The fundamental concepts of the FNT are validated, though in the testing environment the FNT is not shown to be the ideal predicted connectivity architecture for wireless ad hoc networks in comparison to previous work.
Acknowledgments

This PhD thesis would not have been possible without the support of many people and organisations to whom I owe a great deal. I would like to thank particularly:

Dr. Zheng da Wu, for his belief in my abilities, his advice, his encouragement, his wisdom, and his endless kindness. You have been a great and wonderful supervisor.

Dr. Warren Toomey, for his years of supervision, suggestions, guidance, teachings and his willingness to listen when I needed to talk about everything technical.

The School of Information Technology, Bond University, for providing me with a scholarship, resources and the opportunity to complete a PhD, as well as introducing me to and allowing me to pursue my teaching career. Also thanks to the numerous staff over the years who have helped make life easier. Special thanks to Stephanie Patching, who continually made all the difficult paperwork that much easier.

The Australian Government, for providing me with an Australian Postgraduate Award during my PhD candidature.

To fellow PhD candidate James Montgomery, whose numerous donations of advice were outweighed only by the humour and reassurance he constantly provided. So much of this thesis would not have been possible without him.

Officemate Helen Kennett, who has been as much an inspiration as a companion in this journey of life. I doubt I will find an officemate as important as you have been to me.

Simon McGuinness and his family, for encouraging me, for providing me with food, comfort and internet, and making me feel like I had a second home.

Satomi Hagiwara, without whom I probably would have lost focus so long ago. I extend countless thanks for all the memories I've shared with you.
To the numerous friends who have helped make my life really mean something, for providing me with near infinite hours of enjoyment, direction and stability in life. Incredible thanks to Watcharin Surapongwanitchakool, for always believing in me. To Lina Piao for nudging me into life after PhD. To Nick Tran, Laurent Corgnet, Paul Chen, Esther Choong, Maki Nonaka, Yukari Okano, Nick Hamilton, Takeshi Ashenden, and the entire Anime club.

The many, many students who I have taught since I began teaching 7 years ago. It is because of you and the positive experiences that you have provided me with that have been the source of much inspiration over my entire life at Bond.

And finally my family, Brian, Judy, Andrew, James and Kate, for giving me the best home and family I could have hoped for, a place I never want to leave, a place I have been able to achieve everything from my education to my dreams & goals. Thank you.
Publications Arising from this Research

Contents

CHAPTER 1: INTRODUCTION ...1

CHAPTER 2: ROUTING IN WIRELESS AD HOC NETWORKS ..5
 2.1 PREDICTING WIRELESS CONNECTIVITY ..5
 2.2 SIGNAL LOSS MAPS ...8
 2.3 ROUTING ..11
 2.4 AUTONOMOUS ROBOTICS ...14
 2.5 DEFICIENCIES IN CURRENT RESEARCH ...15
 2.6 SUMMARY ...16

CHAPTER 3: OBJECTIVES AND FRAMEWORK ...17
 3.1 OBJECTIVES ...17
 3.2 FRAMEWORK ...17

CHAPTER 4: SIGNAL LOSS MAPS AND THE COMMUNICATION MAP ...20
 4.1 MOTIVATION ...20
 4.2 ISSUES THAT ARE RAISED ..21
 4.3 MAP DESIGN ..23
 4.3.1 Representing areas ...24
 4.3.2 Continually Evolving Map ...26
 4.3.3 Example Map ..29
 4.3.4 Time ..30
 4.3.5 Signal loss representation ..33
 4.3.6 The Modifier Metric ...36
 4.3.7 Estimating Signal Loss ..37
 4.4 MAP CREATION ..38
 4.4.1 Using Signals ..39
 4.4.2 Merging CMs ..45
 4.5 BOUNDARIES ...48
 4.5.1 Design ..50
 4.5.2 Algorithm Overview ..51
 4.5.3 Evaluating Subdivisions ...52
 4.5.4 Mapping Signals ...53
 4.6 SUMMARY ..57

CHAPTER 5: FUTURE NEIGHBOURS ...59
 5.1 MOTIVATION ...59
 5.2 ISSUES THAT ARE RAISED ..59
 5.3 DESIGN ..60
 5.3.1 Task Paths ...61
 5.3.2 FNT Development ..62
 5.3.2.1 Polling Method ...62
 5.3.2.2 Linear Method ..63
 5.4 CREATING THE FUTURE NEIGHBOURS TABLE ...68
 5.4.1 Equalising Two Task Paths ...69
 5.4.2 Creating Signal Loss Over Time (SLOT) Tables using the Linear Method73
 5.4.3 Creating Signal Loss Over Time (SLOT) Tables using the Polling Method78
 5.4.4 Creating the final Future Neighbours Table (FNT) ..78
 5.5 SUMMARY ...81

CHAPTER 6: ROUTING ...82
 6.1 TRADITIONAL AD HOC ROUTING PROTOCOLS ..83
6.1.1 Dynamic Source Routing ... 83
6.1.2 Destination-Sequenced Distance Vector 85
6.1.3 Applying the FNT to Routing Protocols ... 86
6.2 SU'S ALGORITHMS ... 88
6.2.1 Flow Oriented Routing Protocol .. 88
6.2.2 Distance-Vector Protocol with Mobility Prediction 89
6.2.3 LET Predictions ... 90
6.2.4 Modifying Su's Algorithms to use the CM 91
6.3 SUMMARY .. 93

CHAPTER 7: SIMULATION .. 94
7.1 WIRELESS AD HOC NETWORK SIMULATOR (WANS) 94
7.1.1 Overview .. 94
7.1.2 Statistics .. 96
7.1.3 Snapshots .. 98
7.1.4 Network Simulation .. 101
7.1.5 Routing ... 103
7.1.6 Limits on Node Population .. 104
7.2 SUMMARY .. 105

CHAPTER 8: SIMULATION RESULTS ... 106
8.1 SCENARIOS ... 106
8.1.1 Scenario 1 .. 107
8.1.2 Scenario 2 .. 107
8.1.3 Scenario 3 .. 108
8.1.4 Scenario 4 .. 109
8.1.5 Scenario 5 .. 109
8.1.6 Scenario 6 .. 110
8.1.7 Scenario 7 .. 110
8.1.8 Scenario 8 .. 111
8.2 COMMUNICATION MAP ... 112
8.2.1 Signal Loss Mapping Techniques ... 113
8.2.2 Adaptability to Changing Environments 114
8.2.3 Communication Map Sharing .. 116
8.2.4 Boundaries and DCS ... 116
8.2.5 Number of Nodes .. 121
8.2.6 Time Blocks .. 124
8.2.7 MCSD and MCMC .. 126
8.2.8 Bandwidth Requirements ... 127
8.2.9 Summary .. 128
8.3 FUTURE NEIGHBOURS ... 129
8.3.1 Scenario 5 .. 130
8.3.2 The Case of Scenario 7 .. 133
8.3.3 All Scenarios .. 136
8.3.4 Computational Efficiency ... 137
8.3.5 Summary .. 139
8.4 ROUTING .. 139
8.4.1 On Demand Routing ... 141
8.4.1.1 Predicted Handoffs ... 141
8.4.1.2 Prediction Accuracy ... 146
8.4.1.3 Drop-off Time Without Route .. 147
8.4.1.4 Number of Routes Established 148
8.4.1.5 Average Hop Count ... 150
8.4.1.6 Network Connectivity .. 151
8.4.1.7 Relation Between CM Accuracy and Route Predicted Handoff Accuracy 153
8.4.2 Distance Vector Routing ... 155
8.4.2.1 Unexpected Drop-offs ... 156
8.4.2.2 Connectivity ... 157
8.4.2.3 Routes Established .. 159
8.5 SUMMARY .. 161

CHAPTER 9: CONCLUSIONS ... 163
List of Figures

Figure 1: Framework ...19
Figure 2: Signal passing through multiple cells.................................26
Figure 3: Actual Cell with Potential Subdivisions27
Figure 4: Parent Cell with Actual Subdivisions27
Figure 5: Example CM ..30
Figure 6: Averaging Window Structure ..32
Figure 7: Signal Propagation ...34
Figure 8: Example Signal ..35
Figure 9: Incorrect Usage of Signal Loss Formula35
Figure 10: Correct Usage of Signal Loss Formula35
Figure 11: Signal passing through multiple cells37
Figure 12: CM Usage ...38
Figure 13: Example usage of Weight ..40
Figure 14: Example Use of Algorithm 4.3 ..44
Figure 15: MUP Format ...46
Figure 16: MUP Cell Format ...47
Figure 17: Averaging Time Window Structure47
Figure 18: Simulated Wireless Map ..49
Figure 19: Node D's Communication Map at 1500 seconds49
Figure 20: Cell Boundary Example ..50
Figure 21: Subdividing Cells implementing Boundaries51
Figure 22: CM Algorithm Flow ..52
Figure 23: 'Polling' Example ..63
Figure 24: Average Signal Loss Change Example64
Figure 25: Parabolic Signal Loss ..65
Figure 26: Simulated Scenario ..65
Figure 27: Logical Distance Between Two Nodes65
Figure 28: Direction of Task Travel ...66
Figure 29: Angle between a Stationary Task and a Moving Task66
Figure 30: Example Point in Time ..67
Figure 31: Overview of FNT Generation ...69
Figure 32: Preliminary Solution for Case 170
Figure 33: Final Solution for Case 1 ..70
Figure 34: Case 2 ..70
Figure 35: Solution for Case 2 ...70
Figure 36: Case 3 ..71
Figure 37: Solution for Case 3 ...71
Figure 38: Possible Areas of Cell Overlap73
Figure 39: Example Point in Time ..73
Figure 40: Example Cell Overlap ..77
Figure 41: Route Request Packet Structure84
Figure 42: Modified Route Reply Packet Structure84
Figure 43: Example RET Calculation .. 84
Figure 44: Example Node Connectivity ... 85
Figure 45: Example Routing Table for Node A .. 85
Figure 46: Flow-REQ Packet Structure .. 88
Figure 47: Example Node Connectivity ... 89
Figure 48: Example Routing Table for Node A .. 90
Figure 49: Simulator Overview ... 95
Figure 50: Example Scenario ... 96
Figure 51: Example Communication Map .. 100
Figure 52: Example Connectivity Between Nodes 100
Figure 53: Example Clustering ... 100
Figure 54: Example Task Path ... 100
Figure 55: Example Cell Overlap .. 100
Figure 56: Sample Simulated Wireless Environment 101
Figure 57: Example Packet Broadcast ... 102
Figure 58: Node Bandwidth Implementation .. 103
Figure 59: Connection History Entry Structure 104
Figure 60: Simulated Wireless Map for Scenario 1 107
Figure 61: Simulated Wireless Map for Scenario 2 108
Figure 62: Simulated Wireless Map for Scenario 3 108
Figure 63: Simulated Wireless Map for Scenario 4 109
Figure 64: Simulated Wireless Map for Scenario 5 109
Figure 65: Simulated Wireless Map for Scenario 6 110
Figure 66: Simulated Wireless Map for Scenario 7 111
Figure 67: Simulated Wireless Map for Scenario 8 112
Figure 68: Average CM Error for Scenario 5 ... 113
Figure 69: Average CM Error for Scenario 6 ... 114
Figure 70: Average CM Error for Scenario 7 ... 115
Figure 71: SWM at 5 minutes ... 115
Figure 72: Node A's CM at 5 minutes .. 115
Figure 73: SWM at 10 minutes .. 115
Figure 74: Node A's CM at 10 minutes .. 115
Figure 75: SWM at 15 minutes .. 115
Figure 76: Node A's CM at 15 minutes .. 115
Figure 77: CM Differences for all Scenarios ... 116
Figure 78: Simulated Wireless Map for Scenario 4 117
Figure 79: Scenario 4 without Boundaries ... 118
Figure 80: Scenario 4 with Boundaries .. 118
Figure 81: Scenario 4: 25m DCS without Boundaries 119
Figure 82: Scenario 4: 100m DCS with Boundaries 119
Figure 83: Scenario 4: 50m DCS with Boundaries 119
Figure 84: Scenario 4: 25m DCS with Boundaries 119
Figure 85: CM Accuracy of Scenario 5 ... 119
Figure 86: CM Accuracy of Scenario 6 .. 119
Figure 87: CM Accuracy of Scenario 7 .. 120
Figure 88: 25m DCS CM without Boundaries for Scenario 7 120
Figure 89: 100m DCS CM with Boundaries for Scenario 7 120
Figure 90: CM Accuracy for all Scenarios ... 121
Figure 139: Total Number of Routes Established for Scenario 7 155
Figure 140: Unexpected Drop-offs for Scenario 7 ... 157
Figure 141: Effect of Broadcast Interval on Unexpected Drop-offs in Scenario 7 157
Figure 142: Unexpected Drop-offs for all Scenarios 157
Figure 143: Connectivity for Scenario 7 .. 158
Figure 144: Effect of Safety Margin on Connectivity in Scenario 7 158
Figure 145: Effect of Broadcast Interval on Connectivity in Scenario 7 158
Figure 146: Connectivity for all Scenarios .. 159
Figure 147: Routes Established for Scenario 7 ... 160
Figure 148: Effect of Safety Margin on Routes Established in Scenario 7 160
Figure 149: Effect of Broadcast Interval on Routes Established in Scenario 7 160
Figure 150: Routes Established for all Scenarios ... 160
Figure 151: Sample XML Task List ... 177
Figure 152: Main Window ... 179
Figure 153: Control Window .. 179
Figure 154: Settings Window ... 180
Figure 155: Plotting Tasks ... 181
Figure 156: Node Task Information .. 181
Figure 157: Sample Simulated Wireless Map .. 182
Figure 158: A sample Communication Map.. 183
Figure 159: Overlay of the Simulated Wireless Map 183
Figure 160: Creating a test signal ... 184
Figure 161: Sample Detailed Cell Information ... 184
Figure 162: Sample Node Connectivity ... 185
Figure 163: Sample Clustering .. 186
List of Tables

Table 4.1: Sample Calculations for Algorithm 4.3 .. 44
Table 4.2: Update Modifiers Table .. 57
Table 5.1: Example FNT ... 60
Table 5.2: Example Task Path ... 62
Table 5.3: Example SLOT Table .. 77
Table 8.1: Node Population ... 107
Table 8.2: Node Population ... 108
Table 8.3: Node Population ... 108
Table 8.4: Node Population ... 109
Table 8.5: Node A’s Predicted Connectivity of Node F .. 132
Table 8.6: Node A’s Actual Neighbour History of Node F .. 132
Table 8.7: Node A’s Neighbour History of Node F ... 135
Table 8.8: Node A’s FNT of Node F ... 135
Table 8.9: Routing History from Node A to Node F ... 144