Why do doctors use treatments that do not work? For many reasons - including their inability to stand idle and do nothing.

Jenny Doust
University of Queensland

Chris Del Mar
Bond University, chris_del_mar@bond.edu.au

Follow this and additional works at: http://epublications.bond.edu.au/hsm_pubs

Recommended Citation
Doust, Jenny and Del Mar, Chris, "Why do doctors use treatments that do not work? For many reasons - including their inability to stand idle and do nothing." (2004). Faculty of Health Sciences & Medicine Publications. Paper 4.
http://epublications.bond.edu.au/hsm_pubs/4

This Editorial is brought to you by the Faculty of Health Sciences & Medicine at ePublications@bond. It has been accepted for inclusion in Faculty of Health Sciences & Medicine Publications by an authorized administrator of ePublications@bond. For more information, please contact Bond University’s Repository Coordinator.
Why do doctors use treatments that do not work?
For many reasons—including their inability to stand idle and do nothing

One of the surprising things about James Lind's celebrated trial of citrus fruit for scurvy was not just that he ignored the evidence from his own trial but that in clinical practice he continued to advocate treatments that he himself had found ineffective, including those containing sulphuric acid. The history of medicine is replete with examples of treatments once common practice but now known not to work—or worse, cause harm. Only because the French surgeon Paré ran out of boiling oil did he discover that not cauterising gun shot wounds with it created much less pain and suffering. Leeches and blood letting were used for thousands of years for almost everything. Attempts to show that they were ineffective were resisted with great passion by the medical profession. More recently, we have had treatment with insulin for schizophrenia and vitamin K for myocardial infarction. In case we are all feeling too smug about silliness in the bad old days, we have the recent crisis on finding that hormone replacement therapy does not prevent cardiovascular disease. Why do we still use ineffective treatments?

One reason is that our expectations for the benefits of treatment are too high. As Voltaire said, "The art of medicine consists in amusing the patient while nature cures the disease." Or, in modern parlance: most drugs work in only 30% or 50% of people. Because patients so often get better or worse on their own, no matter what we do, clinical experience is a poor judge of what does and does not work. Hence the need for adequately powered randomised controlled trials.

A second reason is we are taught that because medicine is based on the sciences, understanding the pathophysiology of disease is essential to effective treatment. And so it is for many treatments. Use of insulin for diabetic coma needs a full understanding of the pathophysiology of diabetes. Similarly, our appreciation of how parachutes slow falls means we do not need a placebo controlled trial of parachutes. But we have many examples where this approach, without empirical testing, is wrong. Until recently, medical students were taught the pathophysiological reasons why β blockers are contraindicated in heart failure (they are a good treatment for heart failure); why colloid is more effective than crystalloid for fluid replacement (it is worse); and that because of the vascular supply of the scaphoid places it at risk of bone density. But it also increases the fracture rate. Flecainide for the treatment of supraventricular tachycardia makes the electrocardiogram look normal, but only after clinical trials (that some thought unethical) did it emerge that it increases mortality.

Some treatments have harms that outweigh their benefits and are not evident in trials. It was only after licensing in the United States and postmarketing surveillance that troglitazone was found to cause liver failure and had to be withdrawn.

Let us not stop at ineffective treatments. Much of the clinical examination and diagnostic testing is more of a ritual than diagnostically useful. We continue to order routine blood tests before surgery without controlled trials to show benefit, and several case series that show that these tests rarely change outcomes or even management. Alternatively, what was once perhaps useful is now superseded by better investigation. When did whispering pectoriloquy last clinch a diagnosis of pneumonia?

Clinicians want to relieve suffering. We find it difficult to do nothing (the aphorism “Don’t just do something, stand there!” seems ludicrous). So we send in the counselling teams after psychological trauma, probably making things worse. Perhaps it is societal opinion (for which one ear of the medical profession is always pricked) that errors of omission are more reprehensible than errors of commission that is at fault. Is missing a rare diagnosis so much worse than harm from over-testing?

What hope is there for not using treatments and tests that don’t work? Medicine is not just a science—it is a human activity. It entails ritual, custom, and the expectations of doctors, patients, and society. To safeguard against ineffective or harmful health care we need doctors who want to do the best they can for their patients, who are willing to continually question their own understandings, and who have readily available sources of information about what does work.

Jenny Doust senior research fellow, general practice
(j.doust@sph.uq.edu.au)

Chris Del Mar professor of general practice
Centre for General Practice, University of Queensland, Medical School, Herston, Queensland 4006, Australia

Competing interests: None declared.

Well informed uncertainties about the effects of treatments

How should clinicians and patients respond?

Uncertainties about the effects of treatments are inevitable. Whatever the basis for judgments about the likely effects of treatments in individual patients, there is no escape from the reality that every such judgment initiates a clinical trial in which there can be no certainty that an individual patient will benefit. Sometimes the judgment will draw on the patient’s past experience of the treatment, more usually on the clinician’s experience of treating other patients. Increasingly, clinicians and patients are taking account of collective experience—the results of formal evaluations of treatments. Maybe this is because they recognise that treatments can sometimes do more harm than good, sometimes on a devastating scale.

What should happen if, after weighing the best available evidence from collective experience and taking account of patients’ preferences, residual uncertainty remains about which treatment options should be chosen? Should the clinician and patient simply press ahead with yet another poorly controlled clinical trial? It is surprising that such questions seem to have been addressed relatively rarely. One attempt to do so was published in this journal three years ago by a medical ethicist. “Doctors must make many practical decisions, often on the basis of inadequate information. Too finely developed a critical faculty, endeavouring disinterestedly to learn the best that may be known and thought, may positively inhibit the ability to make such decisions.”

This approach to dealing with uncertainty is reflected in some of the guidance issued by the National Institute for Clinical Excellence, and it is implicit in the NHS Plan, which calls for a doubling in the numbers of cancer patients participating in clinical trials. The dividends that result from adopting this response to uncertainty can be substantial: gradual and important improvements in the prognosis of children with leukaemia, for example, seem likely to reflect an expectation among paediatric oncologists that decisions about treatment should be taken within the context of controlled trials, so that uncertainties can be addressed and reduced.

Strategies for dealing with uncertainty need to be considered and debated more explicitly. For example, what does the “quality in health care” movement have to say? Has it given sufficient attention to the responsibilities of clinicians and health service managers to reduce uncertainties about the relative merits of different treatments, and thus improve the quality and cost effectiveness of services? What are the responsibilities of clinicians and managers imple


