Differential evolution for RFID antenna design: A comparison with ant colony optimisation

Date of this Version


Document Type

Conference Paper

Publication Details

Citation only.

Montgomery, J., Randall, M., & Lewis, A. (2011). Differential evolution for RFID antenna design: A comparison with ant colony optimisation. Paper presented at GECCO 2011: Genetic and Evolutionary Computation Conference, Dublin, Ireland.

Access the conference website.

2011 HERDC submission. FoR code: 010303

© Copyright Association for Computer Machinery (ACM), 2011




Differential evolution (DE) has been traditionally applied to solving benchmark continuous optimisation functions. To enable it to solve a combinatorially oriented design problem, such as the construction of effective radio frequency identification antennas, requires the development of a suitable encoding of the discrete decision variables in a continuous space. This study introduces an encoding that allows the algorithm to construct antennas of varying complexity and length. The DE algorithm developed is a multiobjective approach that maximises antenna efficiency and minimises resonant frequency. Its results are compared with those generated by a family of ant colony optimisation (ACO) metaheuristics that have formed the standard in this area. Results indicate that DE can work well on this problem and that the proposed solution encoding is suitable. On small antenna grid sizes (hence, smaller solution spaces) DE performs well in comparison to ACO, while as the solution space increases its relative performance decreases. However, as the ACO employs a local search operator that the DE currently does not, there is scope for further improvement to the DE approach.

This document is currently not available here.



This document has been peer reviewed.