Title

Primordium of an artificial Bruch's membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers

Document Type

Journal Article

Publication Details

Citation only

Warnke, P.H., Alamein, M., Skabo, S., Stephens, S., Bourke, R., Heiner, P., & Liu, Q. (2013). Primordium of an artificial Bruch's membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers. Acta Biomaterialia, [epub ahead of print].

Access the journal

© Copyright Acta Materialia Inc., 2013

ISSN

1878-7568

Abstract

Transplanted Retinal Pigment Epithelium(RPE) cells hold promise for treatment of Age-related Macular Degeneration(AMD) and Stargardt Disease(SD), but it is conceivable that the degenerated host Bruch's membrane(BM) as a natural substrate for RPE might not optimally support transplanted cell survival with correct cellular organization. We fabricated novel ultrathin 3-dimensional(3D) nanofibrous membranes from Collagen type I and poly(lactic-co-glycolic acid) (PLGA) by an advanced clinical-grade needle-free-electrospinning process. The nanofibrillar 3D networks highly mimicked the fibrillar architecture of the native inner collagenous layer of human BM. Human RPE cells grown on our nanofibrous membranes bore striking resemblance to native human RPE. They exhibited a correctly orientated monolayer with polygonal cell shape and abundant sheet-like microvilli on their apical surfaces. RPE cells built tight junctions and expressed RPE65 protein. Flat 2-dimensional (2D) PLGA film and cover glass as controls delivered inferior RPE layers. Our nanofibrous membranes may imitate the natural BM to such extent that they allow for the engineering of in vivo-like human RPE monolayer and maintaining its biofunctional characteristics. Such ultrathin membranes may provide a promising vehicle for a functional RPE cell monolayer implantation in the subretinal space in patients with AMD or SD.

This document is currently not available here.

Share

COinS