Title

Rapid prototyping: Porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering

Date of this Version

6-1-2009

Document Type

Journal Article

Publication Details

Interim status: Citation only.

Warnke, P. H., Douglas, T., Wollny, P., Sherry, E., Steiner, M., Galonska, S., Becker, S. T., Springer, I. N., Wiltfang, J., and Sivananthan, S. (2009). Rapid prototyping: Porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue engineering. Part C: Methods, 15(2), 115-124.

Access the publisher's website.

2009 HERDC submission. FoR code: 0601; 1903

© Copyright Mary Ann Liebert, Inc., 2009

Abstract

Selective laser melting (SLM), a method used in the nuclear, space, and racing industries, allows the creation of customized titanium alloy scaffolds with highly defined external shape and internal structure using rapid prototyping as supporting external structures within which bone tissue can grow. Human osteoblasts were cultured on SLM-produced Ti6Al4V mesh scaffolds to demonstrate biocompatibility using scanning electron microscopy (SEM), fluorescence microscopy after cell vitality staining, and common biocompatibility tests (lactate dihydrogenase (LDH), 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), 5-bromo-2-deoxyuridine (BrdU), and water soluble tetrazolium (WST)). Cell occlusion of pores of different widths (0.45–1.2mm) was evaluated. Scaffolds were tested for resistance to compressive force. SEM investigations showed osteoblasts with well-spread morphology and multiple contact points. Cell vitality staining and biocompatibility tests confirmed osteoblast vitality and proliferation on the scaffolds. Pore overgrowth increased during 6 weeks' culture at pore widths of 0.45 and 0.5mm, and in the course of 3 weeks for pore widths of 0.55, 0.6, and 0.7mm. No pore occlusion was observed on pores of width 0.9–1.2mm. Porosity and maximum compressive load at failure increased and decreased with increasing pore width, respectively. In summary, the scaffolds are biocompatible, and pore width influences pore overgrowth, resistance to compressive force, and porosity.

This document is currently not available here.

Share

COinS
 

This document has been peer reviewed.