
Colonising Web Sites of Wiki Pages with Ultra Lightweight Web

Applications

Dr Michael Rees [HREF1], School of Information Technology [HREF2], Faculty of Business,

Technology and Sustainable Development, Bond University [HREF3], Qld 4229, Australia.

mrees@bond.edu.au

Abstract

As an ultra lightweight web application DotWikIE (Rees, 2006) showed that a single web page,

loaded directly from the local machine's filestore, could support a wiki application running within a

web browser. This allows the web page to carry data content which can be used and manipulated

by a browser on any machine without requiring an Internet connection. The single web page

contains both the application logic and data repository for the wiki, is highly portable, and can easily

copied for backup and deployment.

While DotWikIE is useful a web-based wiki with the same functionality has the advantage of being

accessible on any Internet-connected machine. DotWikIEWeb is the evolution of DotWikIE as an

ultra lightweight web application that works either from the local filestore or from a web site. This

paper presents the technological problems and discusses an implementation of DotWikIEWeb and

its ability to become the single page seed of a colony of associated wiki pages. DotWikIEWeb
retains the benefits of single page web applications while gaining the capability to operate on a web

site.

Because of their flexibility wikis in general tend to become unstructured quickly as the user grasps

the freedom to populate and format each wiki component in an ad hoc way. This is seen as one of

the main advantages of a wiki. The paper concludes by discussing some approaches to how wikis

could retain a more regular structure for their content.

Keywords

Ajax, XML, JavaScript, single page application, ultra-lightweight web application, wiki, wiki

interchange format

Introduction

As a mark of recognition of the concept of browser-based software packages there is now a

Wikipedia entry [HREF4] for single page applications. The definition used is 'a web application that

runs entirely in the client web browser'. A single page application consists of individual web pages

that can interact with the user and dynamically update their content in situ. This is achieved using

the Ajax technologies of Javascript code and background, asynchronous HTTP requests to save and

load additional page content.

Rees (2006) discusses ultra lightweight web applications that are a sub-category of single page

applications. An ultra lightweight web application refers to a highly-restrained single page

application that is completely self-contained. This means that all XHTML and XML content, CSS style
sheet rules and Javascript code is held within a single web page file. As has been described (Rees,

2006), ultra lightweight web applications offer significant benefits:

1. Data content updated by user interaction overwrites the original content forming a permanent

data store.

2. The whole application plus content is highly portable, and can
� be carried with the user on a USB drive, for example, and

� works on any machine with the supported browser installed.

3. Only a single file needs to be managed which is also easily duplicated and backed up.

Figure 1 shows the components of the DotWikIE ultra lightweight application described by Rees

(2006) drawn approximately to scale. The CSS embedded style sheet, JavaScript code, XHTML

Page 1 of 11Colonising Web Sites of Wiki Pages with Ultra Lightweight Web Applications

14/09/2007http://ausweb.scu.edu.au/aw07/papers/refereed/rees/paper.html

markup and the XSLT style sheet are of fixed length and occupy 47K in each DotWikIE page.

DotWikIE version 2.1 from which the sizes were taken also contains about 7K of standard I-grains,

the wiki sections that form the content.

Figure 1. DotWikIE Components.

Of course the user edits the I-grains during normal use so that this content will typically grow in

size. The simple nature of DotWikIE in practice limits the number and content of the I-grains. The

author uses DotWikIE to collect and store web page fragments and text, images and links copied
from other documents and email. In this scenario the I-grain contents rarely exceed about 50K and

average 25K over about 20 individual DotWikIE pages.

From another viewpoint an ultra lightweight web application can also be regarded as a self-

managed document which contains its own processing and layout rules as well as the document

content. However this paper continues with the web application theme and the docucentric

approach will be the subject of another publication.

In its original incarnation DotWikIE was designed as a free-standing web page stored and used

directly from the local filestore. Here both Firefox, IE6 and IE7 allow JavaScript to write back to the

filestore after prompting the user for permission to do this. When placed on a web site and

accessed with the http:// protocol the client-side JavaScript is sandboxed and cannot affect the web

server's filestore, so the wiki becomes read only. Nevertheless in this mode DotWikIE files can be

used as simple and effective static web pages.

Being read-only when accessed on a web site turns out to be a fortuitous by-product of an ultra

lightweight web application. Since the web site owners typically have direct access to DotWikIE web

site files they are the only ones able to effect changes to the DotWikIE web pages. Used in this way

DotWikIE becomes a very simple and effective web page publishing mechanism.

Moving Ultra Lightweight Web Applications to the Web

Rees (2006) describes an extension to DotWikIE that mimics the read-write behaviour on local
filestore when viewed on a web server. This extension is called DotWikIEWeb and uses a simple

server-side script resident in an .asp file to perform the page overwriting on the web server.

DotWikIEWeb simply checks to see if it being used on the local filestore or on the web and executes

the appropriate JavaScript code for the execution environment. In fact this extra functionality is

included in the sizes of DotWikIE components shown in Figure 1. DotWikIE and DotWikIEWeb are
currently the same web page that adjusts to its environment automatically.

However DotWikIEWeb in this form consists of two files:

1. the DotWikIEWeb.htm page containing the client-side JavaScript (and CSS, XML and XSLT

data)

2. The .asp server-side script file that performs the file handling on the web server

Page 2 of 11Colonising Web Sites of Wiki Pages with Ultra Lightweight Web Applications

14/09/2007http://ausweb.scu.edu.au/aw07/papers/refereed/rees/paper.html

The .asp file used by DotWikIEWeb of course means it is no longer a genuine ultra lightweight web

application but comes with a satellite server-side script. In the case of DotWikIEWeb the satellite

file is 3.2K, 78 lines of server-side JavaScript. This limits use to Microsoft's IIS web server. However
rewriting the satellite in a 'P' language such as PHP for Apache is a very straightforward task.

The challenges reported in this paper are to:

� Reduce the two files to a single web page to conform to the ultra lightweight web application

definition once more

� Allow DotWikIEWeb to spawn copies of itself on the web server to create a colony of wiki
pages that can act in a simple way as a single composite wiki

The remaining sections in this paper outline the design objectives, some related work in this area,

consideration of implementation options and the eventual implementation of the enhanced

DotWikIEWeb. A final section before the conclusion discusses some approaches to how a simple but

effective wiki like DotWikIEWeb might begin to impose a structure on the ad hoc nature of wiki

content and thus exploit the XML wiki content already present in each DotWikIEWeb file.

Previous Work

As was acknowledged by Rees (2006) the ultra lightweight web application in a single page concept

used by DotWikIE was inspired by the TiddlyWiki [HREF6] application from Jeremy
Ruston. Although lacking several of the tagging, searching and plugin features of TiddlyWiki, a

major advantage of DotWikIEWeb is the substantial improvement in WYSIWYG editing for wiki

content (see below).

Independently Ruston's work on TiddlyWiki has inspired Simon and Daniel Baird of BidiX in Australia
to create a web-based version. BidiX has worked on TiddlyWiki extensions [HREF9] and now has an

impressive web application called TiddlySpot [HREF10] available for public use at no cost. Sign up is
quick and simple and in just a few seconds a user has access to a single wiki page with the

extensive features of TiddlyWiki on the web. Figure 2 shows a part of the wiki page that is
accessible via a URL like http://mrees.tiddlyspot.com.

Figure 2. Default Tiddlyspot Wiki Page.

Page 3 of 11Colonising Web Sites of Wiki Pages with Ultra Lightweight Web Applications

14/09/2007http://ausweb.scu.edu.au/aw07/papers/refereed/rees/paper.html

In order to support user names and passwords the Bairds have of necessity broken away from the

ultra lightweight web application on the web server. They leverage the standard HTTP

authentication modules built in to the Apache web server, so additional files are needed to support
Tiddlyspot. Nevertheless the download link in Figure 2 allows the capture of the single page (file) on

the local filestore where it becomes a standard TiddlyWiki page. As usual this allows editing and

saving locally. With IE6/7 on Windows XP the wiki page needs to prompt the user for permission to

run Javascript and use the ActiveX control for manipulating the local filestore just as DotWikIE and

DotWikIEWeb do.

Many other web-based wiki software packages are available some open source and some

commercial. They adopt the traditional multiple-page paradigm even though the URL displayed in
the browser address field may appear to be a single page. Thus they do not fall into the ultra

lightweight web application category.

Developing Web-based Wikis with DotWikIEWeb

For the original, non-ultra lightweight web application version of DotWikIEWeb the installation on a

web site is exceedingly simple:

1. Copy a DotWikIEWeb page and its satellite file to a folder controlled by a web server

2. Allow the satellite server-side script to write to that folder

DotWikIEWeb then allows additional wiki pages to created, edited and deleted as needed. The

author has used DotWikIEWeb in this way over several problem-free months. The only unintended

outcome was the discovery that when copying and pasting web page content some hyperlinks
happen to contain wikiwords. Of course DotWikIEWeb converted these to intra-wiki links within a

link! A simple change to exclude this context for the wikiword detection code was able to solve this

problem.

Over this trial period the author has used DotWikIEWeb at least daily on a hosting service

(Seekdotnet [HREF5]) which offers shared web site hosting on Windows machines running IIS.
Indeed the author's browser home page is a DotWikIEWeb page containing frequently-used

hyperlinks. It takes a matter of a few seconds to edit an I-grain to add, edit or delete links, and

then click the Save All button to make the change permanent. It is equivalent to having permanent

access to the organise favourites/bookmarks feature of most browsers when the browser starts up

or when the Home button is clicked. Figure 3 shows an example of this master links page and the

type of format that is possible in DotWikIEWeb.

Page 4 of 11Colonising Web Sites of Wiki Pages with Ultra Lightweight Web Applications

14/09/2007http://ausweb.scu.edu.au/aw07/papers/refereed/rees/paper.html

Figure 3. DotWikIEWeb Master Links Page.

The hosted DotWikIEWeb pages are accessible from anywhere on the Internet so the wiki page

contents are instantly accessible from any Internet-connected machine running Internet Explorer.

There has been a downside to this very simple and effective mechanism. As well as the author

anyone with a knowledge of the URL can both view and edit the pages. Over several months this

did not prove a problem but obviously an authentication mechanism is needed. Other improvements

were needed to make DotWikIEWeb a viable multiple-page wiki served from the web.

The first extension to DotWikIEWeb attempted was to reduce the web-based operation to a single

file to reinstate the ultra lightweight web application status. This meant that the DotWikIEWeb page
file must be capable of generating the satellite file containing server-side code itself on first

activation. To achieve this every DotWikIEWeb page must carry with it the satellite generation
mechanism.

Once the DotWikIEWeb.htm page is placed in a writable folder on a web server, and displayed in
the browser using it local file path, it checks for the existence of the satellite file. If it is not present

then the satellite file is created. This begins the colonisation of the cluster of wiki web pages, ie the
wiki page colony. DotWikIEWeb need only be accessed once in this way. Of course this leads to a

slight increase in the size of the management Javascript code with additional components as shown

in Figure 4.

Page 5 of 11Colonising Web Sites of Wiki Pages with Ultra Lightweight Web Applications

14/09/2007http://ausweb.scu.edu.au/aw07/papers/refereed/rees/paper.html

Figure 4. DotWikIEWeb Components.

There are three major changes compared to the makeup of DotWikIE in Figure 2:

1. The ASP code that will form the satellite server-side code file is contained in an XML data

island within the page.

2. Additional XHTML is needed to incorporate the extra features of DotWikIEWeb in the web

environment.

3. A significant addition to the JavaScript code to implement authentication features described in

further detail below.

It will be seen that overall size of DotWikIEWeb as distributed with a standard set of I-grains has

grown only from 54K to 67K, a modest 24% increase for the ability to use the same wiki pages in a

web environment.

A very simple and straightforward set of features is needed to manage the wiki page colony, the

collection of DotWikIEWeb pages in a single folder on a web site. Having spawned the satellite

server-side code file, additional copies of the first DotWikIEWeb page are created with the Create

Empty Wiki Page button shown in Figure 3. As with all the web-based features the JavaScript code
determines the environment, web or local filestore. If it is the web context then the new empty wiki

page with the name entered by the user uses an XMLHTTPRequest call, the heart of Ajax, to create

the new wiki page. Figure 5 shows the simple dialog for creating a wiki page.

Figure 5. Create New Empty Wiki Page.

Once a colony of wiki pages begins to grow there must a mechanism for quickly moving from one

page to another. By default each DotWikIEWeb wiki page lists the I-grain sections in that wiki page.
As shown in Figure 3 listing the pages in the wiki colony is available via the Pages button adjacent

to the I-grains button. Again this is populated using an XMLHTTPRequest call to the satellite

management code to list all the wiki pages in the same folder on the web. Figure 6 shows the

simple list of hyperlinks to the wiki page colony.

Page 6 of 11Colonising Web Sites of Wiki Pages with Ultra Lightweight Web Applications

14/09/2007http://ausweb.scu.edu.au/aw07/papers/refereed/rees/paper.html

Figure 6. List of Pages in Wiki Colony.

Alongside each page link in the list appears a subsidiary button to delete that page after being

confirmed by the user. Each wiki page can be visited and edited as normal via this list. As with

DotWikIE there is versioning available in DotWikIEWeb and these versions also appear in the list if

they are present. A DotWikIEVersions I-grain used to be the mechanism by which the versions were
made visible. This required awkward JavaScript code to maintain and has been deleted in favour of

the simple page list features in DotWikIEWeb. This has saved probably 100 lines of JavaScript code

amounting to about 2 K in file size. The I-grain list is restored again by clicking the I-grains button.

The requirement to authenticate the user to limit the ability to edit and delete pages in the wiki

colony has not been so straightforward to implement. This is hardly surprising as a normal

implementation mechanism requires a centralised storage location for user names and passwords.
Such a concept violates the ultra lightweight web application principle because it requires additional

files.

Since each DotWikIEWeb page contains a data store the names/passwords could be stored there.

However it would be very confusing for users to be faced with a different set of names and

passwords in each wiki page. In any case a wiki page colony on the web is likely to be centred on a
single human user or at best a small group of users sharing the same wiki colony. With this usage

scenario in mind it was decided to manage only a single password which grants creation, update

and deletion rights to each wiki page colony. While only one password is needed this must be
shared amongst all pages. Since the satellite ASP file must be separately spawned it was decided to

add a second password file to hold the encrypted password.

The file DotWikIEWebPassword.pass file is a simple XML file holding the password encrypted with

the SHA1 algorithm (see the Wikipedia entry [HREF7]). Even though SHA1 has been compromised

it is still sufficiently strong to protect a DotWikIEWeb wiki page colony. DotWikIEWeb adopts the

widely used JavaScript implementation of SHA1 from Paul Johnston [HREF8] which occupies only

200 lines of code. Indeed DotWikIEWeb only uses one of several JavaScript functions for SHA1 in

the Johnston code so with careful inspection the code size could be substantially reduced.

The single password file is shared by all pages in the wiki colony. A few lines of ASP in the satellite

file checks the user's password encrypted with SHA1 against the value in the password file, allowing

changes only on a match. A downside is that each DotWikIEWeb wiki page must prompt for the

password at least once where changes are made to that page which can be tedious when changes

are needed to several pages in succession. If the user allows it this perpetual prompt for a
password can be alleviated by using a cookie with an expiration of a typical session such as 20 to

30 minutes.

DotWikIEWeb, as the web version of DotWikIE, was designed to free the user of the shackles of

having to learn special wiki formatting syntax. Most wikis use plain text editing and special escape
sequences for headings, bullet and number lists, italic and bold and other layouts. DotWikIEWeb

employs the WYSIWYG expected from applications like Microsoft Word. Figure 7 shows the edit

mode user interface exposed when the user clicks on the Edit button of an I-grain.

Page 7 of 11Colonising Web Sites of Wiki Pages with Ultra Lightweight Web Applications

14/09/2007http://ausweb.scu.edu.au/aw07/papers/refereed/rees/paper.html

Figure 7. DotWikIEWeb WYSIWYG Editing.

The usual GUI editing process is used: select text or set the insertion point then choose an action.

This is made possible by the built-in HTML editor of Internet Explorer which had been available from

version 5 onwards. Another Internet Explorer-only feature is the use of a special dialog helper

<object> that allows the dropdown lists for block formats and fonts in Figure 7to be dynamically

generated.

Usually it is possible to display a row of toolbar icons instead of the text buttons to control the

editing functions. The single-file restriction of an ultra lightweight web application prevents this as
all images, no matter how small, must be stored in separate image files. Carefully chosen names for

the text buttons, while taking up a little more screen real estate, can actually be an improvement

over toolbar icons that often need tooltips to explain their operation. As can be seen from Figure 7

tooltips can be used in DotWikIEWeb to elaborate on the button names as well.

The only other special processing of the I-grain contents is the search for wikiwords. When found
these wikiwords must be extended into links to individual I-grains of the same name. This is an

expected feature of all wikis. Since the I-grain may be scrolled off screen or currently hidden a

JavaScript link is used to make the I-grain visible on the screen when the link is followed. The other

important behaviour of a wikiword link is that if the I-grain does not exist it is automatically created
when the link is first followed.

Fortunately another excellent by-product of the built-in HTML editor is that a word that appears to

be a URL or an email address is automatically turned into the appropriate link. Thus external links

are automatically catered for. However that leaves a gap in the supported mechanisms for links to

other pages in the same wiki page colony. Thus another mechanism was needed for

DotWikIEWeb. In the end a popular markup from plain text wiki editors was adopted. If the user

places text within double square brackets it is assumed to be a link and an <a> tag sequence is

generated. Thus

[[ShortNotes]]

inserted into the contents of an I-grain would be transformed into a relative link to the

ShortNotes.htm page in the same folder.

Thus the major features of DotWikIEWeb that make it suitable for supporting web-based wikis are:

� built-in wiki page colony creation after the import of the single DotWikIEWeb web page; web

folder file management server-side script satellite file and password XML file created
� extension of the empty wiki page creation mechanism to operate on the web

� a simple wiki page list mechanism that incorporates a deletion facility

� a password mechanism for protecting creation/editing/deletion of wiki pages, allowing shared

web access by knowing the password

� a simple syntax extension to I-grain content to allow the insertion of link between wiki pages

Page 8 of 11Colonising Web Sites of Wiki Pages with Ultra Lightweight Web Applications

14/09/2007http://ausweb.scu.edu.au/aw07/papers/refereed/rees/paper.html

in the same colony

These code additions, which also incorporated a user interface and code simplication, added 24% to

the size of DotWikIEWeb compared to DotWikIE.

Working with the Structure of Wiki Content

Fundamental to the wiki concept is the ability of users to add/edit/delete content as required and

with no limit of layout within each page. The free-form and flexible nature of how wiki content

grows means that it is difficult for users to maintain an information structure that will stay the test
of time. DotWikIEWeb adopts the small wiki fragment concept (I-grains in DotWikIEWeb) from

TiddlyWiki that uses tiddlers. These I-grains are listed in alphabetical order on the left as seen in

Figure 3. This list acts as an automatic table of contents and is a visual navigation aid within a

single wiki page. Individual wiki pages in the colony are listed alphabetically in place of the I-grains

when the Pages button is clicked so giving access to a table of contents for the whole colony. Thus

DotWikIEWeb provides via the I-grains an additional layer of content structure compared to a

normal wiki.

It should be noted here that TiddlyWiki in its latest versions also supports tagging of each tiddler.

This adds an additional granularity to the wiki content structure. However the success of tagging is

very much dependent upon the effort the individual user puts into an appropriate tag set and the

frequency of applying tags at the point of creating and editing wiki content. The names of I-grains
which must be wikiwords at least forces the use of meaningful names that can be used to impose

some structure on the wiki content.

The importance of extracting wiki content structure is leading increased interest in semantic wikis.

The first workshop on this topic, "SemWiki2006 - From Wiki to Semantics", was held at the 3rd

Annual European Semantic Web Conference in July 2006. Such semantic wikis attempt to combine

the strengths of the semantic web (machine processable, data integration, complex queries) and
the wiki (easy to use and contribute, strongly interconnected, collaborative) technologies. The goals
of semantic wikis include:

� simple annotations of existing wiki content;
� tools that guide users from informal knowledge contained in texts to more formal structures;

� full-fledged tools for ontology editing where the text is no longer in the focus of the system.

One of the papers from the workshop by Volkel and Oren (2006) addresses the issue of a wiki
interchange format that the authors name WIF. Although WIF is a heavyweight format the authors

realised that trying to harmonise the myriads of proprietary wiki formats was not useful. Instead

they opted to start with a data model shared by all wikis as shown in Figure 8.

Figure 8. A High-Level View of a Wiki Data Model.

Being a conventional wiki DotWikIEWeb fits the wiki data model of Figure 8 exactly apart from the

lack of attachments. Should WIF become a widely used interchange standard it will be

straightforward to generate a WIF file from the XML already exported by DotWikIEWeb (see the

Export XML Content button in Figure 3).

Page 9 of 11Colonising Web Sites of Wiki Pages with Ultra Lightweight Web Applications

14/09/2007http://ausweb.scu.edu.au/aw07/papers/refereed/rees/paper.html

In the meantime a future version of DotWikIEWeb will concentrate on a more lightweight version of

WIF in pure XML format. Referring to Figure 8 DotWikIEWeb already outputs for each wiki page the

data values for the Page, Title, Time and Section (I-grain) boxes in the model. Taking a suggestion

from the WIF authors it will be a simple matter to extract from each I-grain their proposed XHTML

subset of a, dd, dl, dt, em, h1-h6, hr, li, ol, pre, strong, table, td, tr and ul elements. Once the

lightweight WIF for each wiki page is generated the XML can be combined into the single Wiki data

box from Figure 8.

Another useful approach to introducing more semantic structure during wiki operation is to use light

constraints (Di Iorio & Zacchiroli, 2006). At first sight the connecting of "constraint" with "wiki"

appears to violate the flexibility and freedom of "the Wiki Way". The authors define light constraints
as rules that can be temporarily violated without inhibiting the proper wiki run-time behaviour.

Example light constraints can be as simple as spell checkers and the insistence on wikiwords for

new I-grains that DotWikIEWeb already implements. However the authors of the light constraint

concept use a data model-driven validation mechanism that can be used for all wikis that can insist

on the presence of certain meta data before a wiki page (or section) can be marked as validated.

Non-validated content is still accepted into the wiki but is marked as such. This gentle persuasion

approach is likely to provoke less resistance from users.

Conclusions and Future Work

It has been shown with the DotWikIEWeb implementation that it is possible to build a useful web-
based wiki page colony seeded from a single web page. The user can create any number of

additional wiki pages in the colony and simple mechanisms are available to access any wiki page

and manage the colony collection. While limited to working with Internet Explorer DotWikIEWeb has

an extremely simple interface for editing wiki content, much simpler that typical plain text wikis.
This makes DotWikIEWeb ideal for copying and pasting web page fragments complete with all fonts,

text and background colours, links and media such as image, audio and video. Such fragments

retain fidelity within the I-grains and become part of the wiki.

The ultra lightweight web application technique described here for implementing wiki functionality is
extensible to many other types of application. It can be used for word processors, spreadsheets,
slide shows, simple databases and personal information management tasks. Data for these types of
application can be represented in XML format and embedded in the ultra lightweight web application

page just as for DotWikIEWeb. Obviously the size of the data introduces natural limits to page size

but is likely to work successfully with sizes of up to 0.5 MB on broadband links.

There is still scope for several further improvements to DotWikIEWeb. Using formats such as SVG
should allow images to appear within the single page contents and be rendered by browsers or at

least with appropriate plugins. While each DotWikIEWeb page may have many I-grains each of

these tends to have a small amount of content so that finding information is not usually a problem.

However, a search facility both within a page and across the wiki page colony is an obvious

extension with a high utility.

A lofty ambition for DotWikIEWeb is to become browser independent. This would require a

Javascript-based XHTML editor embedded within a single page that supports all main browsers.

There are many open source Javascript XHTML editors that can be loaded as a single, compressed
file, but when uncompressed spread over several files, usually including images, in order to

function. Perhaps a single page version of such an editor might become available one day. In any

case the need for such an editor is already pressing as the built-in HTML editor in IE7 is not

available on Windows Vista, so that for DotWikIEWeb to survive a new editor on Vista is required.

References

Di Iorio, A. & Zacchiroli, S. (2006). Constrained Wiki: An Oxymoron?, Proceedings of WikiSym'06,

Odense, Denmark, 2006, pp 89-98.

Rees, M. J. (2006). Ultra Lightweight Web Applications: A Single-Page Wiki employing a Partial Ajax

Solution, Proceedings of the Twelfth Australasian World Wide Web Conference, Noosaville, 2006.

Page 10 of 11Colonising Web Sites of Wiki Pages with Ultra Lightweight Web Applications

14/09/2007http://ausweb.scu.edu.au/aw07/papers/refereed/rees/paper.html

Volkel, M, & Oren, E. (2006). Towards a Wiki Interchange Format (WIF), Proceedings of the First

Workshop on Semantic Wikis: From Wiki to Semantics, Budva, Montenegro, 2006, pp 230-244.

Hypertext References

HREF1 Dr Michael J Rees

http://www.bond.edu.au/it/staff/michael.htm

HREF2 School of IT, Bond University

http://www.sit.bond.edu.au/

HREF3 Bond University
http://www.bond.edu.au/

HREF4 Single page application definition
http://en.wikipedia.org/wiki/Single_page_application

HREF5 SeekDotNet Hosting Service

http://www.seekdotnet.com

HREF6 TiddlyWiki

http://www.tiddlywiki.com

HREF7 Wikipedia Entry for SHA1
http://en.wikipedia.org/wiki/SHA1

HREF8 Paul Johnston SHA1 in Javascript

http://pajhome.org.uk/crypt/md5

HREF9 BidiX TiddlyWiki Extensions
http://tiddlywiki.bidix.info/

HREF10 TiddlySpot

http://www.tiddlyspot.com/

Copyright

Michael Rees, © 2007. The author assigns to Southern Cross University and other educational and

non-profit institutions a non-exclusive licence to use this document for personal use and in courses

of instruction provided that the article is used in full and this copyright statement is reproduced.
The authors also grant a non-exclusive licence to Southern Cross University to publish this

document in full on the World Wide Web and on CD-ROM and in printed form with the conference

papers and for the document to be published on mirrors on the World Wide Web.

Page 11 of 11Colonising Web Sites of Wiki Pages with Ultra Lightweight Web Applications

14/09/2007http://ausweb.scu.edu.au/aw07/papers/refereed/rees/paper.html

