Cardiovascular risk scores do not account for the effect of treatment: A review

Su May Liew
University of Oxford

Jenny Doust
Bond University, jenny_doust@bond.edu.au

Paul Glasziou
Bond University, paul_glasziou@bond.edu.au

Follow this and additional works at: http://epublications.bond.edu.au/hsm_pubs

Part of the Cardiovascular Diseases Commons

Recommended Citation

Cardiovascular risk scores do not account for the effect of treatment: a review

S M Liew,1,2 J Doust,3 P Glasziou2,3

ABSTRACT

Objective To compare the strengths and limitations of cardiovascular risk scores available for clinicians in assessing the global (absolute) risk of cardiovascular disease.
Design Review of cardiovascular risk scores.
Data sources Medline (1966 to May 2009) using a mixture of MeSH terms and free text for the keywords ‘cardiovascular’, ‘risk prediction’ and ‘cohort studies’.
Eligibility criteria for selecting studies A study was eligible if it fulfilled the following criteria: (1) it was a cohort study of adults in the general population with no prior history of cardiovascular disease and not restricted by a disease condition; (2) the primary objective was the development of a cardiovascular risk score/equation that predicted an individual’s absolute cardiovascular risk in 5–10 years; (3) the score could be used by a clinician to calculate the risk for an individual patient.
Results 21 risk scores from 18 papers were identified from 3536 papers. Cohort size ranged from 4372 participants (SHS) to 1591209 records (QRISK2). More than half of the cardiovascular risk scores (11) were from studies with recruitment starting after 1980. Definitions and methods for measuring risk predictors and outcomes varied widely between scores. Fourteen cardiovascular risk scores reported data on prior treatment, but this was mainly limited to antihypertensive treatment. Only two studies reported prior use of lipid-lowering agents. None reported on prior use of platelet inhibitors or data on treatment drop-ins.
Conclusions The use of risk-factor-modifying drugs—for example, statins—and disease-modifying medication—for example, platelet inhibitors—was not accounted for. In addition, none of the risk scores addressed the effect of treatment drop-ins—that is, treatment started during the study period. Ideally, a risk score should be derived from a population free from treatment. The lack of accounting for treatment effect and the wide variation in study characteristics, predictors and outcomes causes difficulties in the use of cardiovascular risk scores for clinical treatment decision.

INTRODUCTION

For many years, the Framingham cardiovascular risk equation has been the preferred method of cardiovascular risk assessment. However, in February 2010, the National Institute for Health and Clinical Excellence (NICE) announced that the Framingham equation should be considered as just one of several acceptable methods.1 The same guideline included a systematic review, which found 110 different cardiovascular risk-scoring methods. Clinicians are now able and expected to select, from these 110 cardiovascular risk scores, one that is appropriate for their patients. How should they decide which one is appropriate?

Despite guidelines advocating the use of cardiovascular risk scores to calculate global risk instead of focusing on single risk modification, adoption of cardiovascular risk scores has been slow.2 One survey in three countries showed that only 48% of physicians regularly use cardiovascular risk scores.3 In another survey in six European countries, 85% of respondents recognised the importance of global risk assessment; yet, the majority (62%) used a subjective assessment of cardiovascular risk rather than specific risk calculators in practice.4 Subjective risk assessment often disagrees with assessment by cardiovascular risk scores.5 6 Doctors who use cardiovascular risk scores can rate individual risk factors more accurately7 and are more likely to correctly prescribe treatment in given scenarios than non-users.8

Why don’t doctors use cardiovascular risk scores in practice? Many physicians do not trust the validity of the risk scores9 and believe their own estimation to be more accurate.3 Another reason may simply be that there is too much choice. The Framingham risk equations were first published in 1976.8 Since then, many other cohort studies have developed their own equations such as PROCAM,9 SCORE10 and QRISK.11 These cohort studies differ significantly in terms of study population characteristics, risk predictors and outcomes.12

Cardiovascular risk scores measure baseline risk factors to predict future cardiovascular morbidity.
and mortality, but most do not account for changes in treatment during the years of follow-up. Failure to adjust for such treatment effects will cause cardiovascular risk scores to systematically underestimate predicted risk. This problem is greater for more recent studies with the progressive increase in the use of effective medication for blood pressure and lipids over the past 20–30 years.13 14

We aimed to review the strengths and limitations of current cardiovascular risk scores, to assess how these may impact on the classification of patients’ risk of cardiovascular disease, and to identify the scores that may be most appropriate for use in clinical care.

METHODS OF REVIEW

Objectives
The objective of this review is to assess the strengths and limitations of cardiovascular risk scores available to clinicians for the assessment of global or absolute risk of cardiovascular disease. A particular focus was on how the risk scores dealt with the effects of treatment during follow-up.

Search methods for identification of studies
We searched Medline (1966 to May 2009) using a mixture of MeSH terms and free text for the keywords ‘cardiovascular’, ‘risk prediction’ and ‘cohort studies’. To identify other studies that answered our question, we also used our own literature files, previous reviews of cardiovascular scores, and citation tracking.

A study was eligible if it fulfilled the following criteria: (1) it was a cohort study of adults in the general population with no prior history of cardiovascular disease and not restricted by a disease condition; (2) the primary objective was the development of a cardiovascular risk score/equation that predicted an individual’s absolute cardiovascular risk in 5–10 years; and (3) the score could be used by a clinician to calculate the risk for an individual patient.

Identifying studies
We screened the titles and abstracts of all retrieved records to identify exclusions. Full copies or reprints of records not excluded were then assessed to determine if they met with the inclusion criteria for the review. Any disagreements were resolved through discussion.

Data extraction
Two reviewers, LSM and JD, appraised and selected the studies, then extracted information from each study for analysis. Information extracted included study demographics, outcomes, predictors and treatment effect.

Analytical methods
Study methods were assessed using criteria adapted from Wasson et al15 and Royston et al,16 including sampling, predictors, follow-up, outcomes, data quality and performance of the rule.

RESULTS
A total of 3536 papers were retrieved after removal of duplicates from records identified through the Medline search and other sources. Figure 1 shows the PRISMA flow diagram. The PRISMA statement and review protocol are available online as supplemental material.

Description of studies
We identified 21 risk scores eligible for the review (table 1) from 18 papers. Five were from Framingham,8 17–19 three from the...
In the Framingham Offspring cohort, this definition was broadened to a fasting plasma glucose level ≥140 mg/dl (7.7 mmol/l) or treatment requirement. This in turn differs from the current definition used by the World Health Organization (WHO) of fasting plasma glucose ≥126 mg/dl (7.0 mmol/l). Hence, patients with fasting plasma glucose between 126 and 150 mg/dl (7–8.3 mmol/l) would be classed as non-diabetics by the first Framingham score. Systolic blood pressure measurement...
Table 2 Analytical methods

<table>
<thead>
<tr>
<th>Study</th>
<th>Prospective</th>
<th>Predictors defined</th>
<th>Predictor selection</th>
<th>Follow-up loss</th>
<th>Missing values</th>
<th>Outcomes defined</th>
<th>Objective outcomes</th>
<th>Blinded assessment of outcomes</th>
<th>Model used</th>
<th>Results of rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Framingham 1976</td>
<td>Yes</td>
<td>EGC-LVH</td>
<td>NR</td>
<td>NR</td>
<td>Complete data - IC</td>
<td>Yes</td>
<td>Includes angina</td>
<td>NR</td>
<td>Logistic regression</td>
<td>NR</td>
</tr>
<tr>
<td>Framingham 1991</td>
<td>Yes</td>
<td>EGC-LVH</td>
<td>Significance testing</td>
<td>NR</td>
<td>Complete data - IC</td>
<td>Yes</td>
<td>Includes angina</td>
<td>NR</td>
<td>Weibull model</td>
<td>c statistic</td>
</tr>
<tr>
<td>Framingham 1998</td>
<td>Yes</td>
<td>EGC-LVH</td>
<td>Significance testing</td>
<td>NR</td>
<td>Complete data - IC</td>
<td>Yes</td>
<td>Includes angina</td>
<td>NR</td>
<td>Cox model</td>
<td>c statistic</td>
</tr>
<tr>
<td>Framingham 2008</td>
<td>Yes</td>
<td>EGC-LVH</td>
<td>Significance testing</td>
<td>NR</td>
<td>Complete data - IC</td>
<td>Yes</td>
<td>Includes angina</td>
<td>Adjudication committee</td>
<td>Cox model</td>
<td>c statistic and calibration</td>
</tr>
<tr>
<td>PROCAM 2002</td>
<td>Yes</td>
<td>EGC-LVH</td>
<td>Significance testing</td>
<td>Yes</td>
<td>NR</td>
<td>Yes</td>
<td>Yes</td>
<td>NR</td>
<td>Cox model</td>
<td>ROC + calibration</td>
</tr>
<tr>
<td>PROCAM 2007 CHD</td>
<td>Yes</td>
<td>EGC-LVH</td>
<td>Significance testing</td>
<td>NR</td>
<td>NR</td>
<td>Yes</td>
<td>Yes</td>
<td>NR</td>
<td>Weibull model</td>
<td>ROC</td>
</tr>
<tr>
<td>Stroke</td>
<td>Yes</td>
<td>EGC-LVH</td>
<td>Significance testing</td>
<td>NR</td>
<td>NR</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Cox model</td>
<td>ROC</td>
</tr>
<tr>
<td>SCORE 2003</td>
<td>Pooled prospective cohorts</td>
<td>A priori</td>
<td>NR</td>
<td>No HDL in some cohorts</td>
<td>Yes</td>
<td>Yes</td>
<td>Used diagnostic codes</td>
<td>Weibull model</td>
<td>ROC</td>
<td></td>
</tr>
<tr>
<td>ARIC 2003</td>
<td>Yes</td>
<td>EGC-LVH</td>
<td>Significance testing</td>
<td>Yes</td>
<td>Complete data - IC</td>
<td>Yes</td>
<td>Includes revascularisation</td>
<td>NR</td>
<td>Cox model</td>
<td>ROC</td>
</tr>
<tr>
<td>Progetto CUORE 2004</td>
<td>Yes</td>
<td>EGC-LVH</td>
<td>Significance testing</td>
<td>NR</td>
<td>NR</td>
<td>Yes</td>
<td>Includes revascularisation</td>
<td>Used diagnostic codes</td>
<td>Cox model</td>
<td>ROC</td>
</tr>
<tr>
<td>Strong Heart Study 2006</td>
<td>Yes</td>
<td>EGC-LVH</td>
<td>Significance testing</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Includes angina and revascularisation</td>
<td>NR</td>
<td>Cox model</td>
<td>ROC + calibration</td>
</tr>
<tr>
<td>USA-PRC 2006</td>
<td>Yes</td>
<td>EGC-LVH</td>
<td>A priori</td>
<td>Yes</td>
<td>Complete data - IC</td>
<td>Yes</td>
<td>Yes</td>
<td>Adjudication committee</td>
<td>Cox model</td>
<td>ROC + calibration</td>
</tr>
<tr>
<td>ASSIGN 2007</td>
<td>Yes</td>
<td>EGC-LVH</td>
<td>Significance testing</td>
<td>NR</td>
<td>NR</td>
<td>Yes</td>
<td>Includes angina and revascularisation</td>
<td>Used diagnostic codes</td>
<td>Cox model</td>
<td>ROC</td>
</tr>
<tr>
<td>Reynolds women 2007</td>
<td>Yes</td>
<td>Trial data</td>
<td>Model testing - BIC</td>
<td>NR</td>
<td>NR</td>
<td>Yes</td>
<td>Includes revascularisation</td>
<td>NR</td>
<td>Cox model</td>
<td>ROC + calibration</td>
</tr>
<tr>
<td>Reynolds men 2008</td>
<td>Yes</td>
<td>Trial data</td>
<td>Model testing - BIC</td>
<td>NR</td>
<td>Complete data - IC</td>
<td>Yes</td>
<td>Includes revascularisation</td>
<td>Adjudication committee</td>
<td>Not specified</td>
<td>ROC + calibration</td>
</tr>
<tr>
<td>Personal Heart 2007</td>
<td>Yes</td>
<td>Self report</td>
<td>Significance testing</td>
<td>NR</td>
<td>NR</td>
<td>Yes</td>
<td>Includes revascularisation</td>
<td>NR</td>
<td>Cox model</td>
<td>c statistic</td>
</tr>
<tr>
<td>QRISK 2007</td>
<td>No</td>
<td>Retrospective GP record</td>
<td>Model testing - BIC</td>
<td>NR</td>
<td>Significant missing data</td>
<td>Diagnosis from GP records or death certificate</td>
<td>Includes angina</td>
<td>Used diagnostic codes</td>
<td>Cox model</td>
<td>ROC + calibration</td>
</tr>
<tr>
<td>QRISK 2 2008</td>
<td>No</td>
<td>Retrospective GP record</td>
<td>Model testing - BIC</td>
<td>NR</td>
<td>Significant missing data</td>
<td>Diagnosis from GP records or death certificate</td>
<td>Includes angina</td>
<td>Used diagnostic codes</td>
<td>Cox model</td>
<td>ROC + calibration</td>
</tr>
<tr>
<td>NHEFS 2008</td>
<td>Yes</td>
<td>EGC-LVH</td>
<td>A priori</td>
<td>NR</td>
<td>Complete data - IC</td>
<td>Yes</td>
<td>Includes revascularisation</td>
<td>Used diagnostic codes</td>
<td>Cox model</td>
<td>ROC + calibration</td>
</tr>
</tbody>
</table>

EGC-LVH, left ventricular hypertrophy on electrocardiogram; NR, not reported; IC, inclusion criteria; ROC, receiver operating characteristic; CHD, coronary heart disease; HDL, high density lipoprotein cholesterol; BIC, Bayes Information Criteria; GP, general practice.
methods included averages taken from two readings (Framingham, Progetto CUORE, ASSIGN), average of last two of three readings (ARIC, SHS, NHEFS), average of three readings (USA-PRC) and second reading taken from two readings (PROCAM). For some scores, the measurement method was ill defined: self-report (Reynolds Study), general practitioner record or death (Reynolds 2007, Reynolds 2008, Personal Heart, QRISK1, QRISK2 and NHEFS). QRISK1 and 2 used general practice electronic recorded diagnosis or death certificates linked to the computer system.

Outcomes predicted

The outcomes predicted differ widely between the risk scores (table 4), ranging from general cardiovascular risk to specific disease outcomes. Almost all scores predict myocardial infarction and death from coronary heart disease. Only 12 of the 21 scores included cerebrovascular events. SCORE only predicts fatal cardiovascular events.

Methods to assess outcome events also differed. The SCORE and ASSIGN scores used hard outcomes with diagnostic codes such as ICD 9/10 codes. ‘Hard outcomes’ can be defined as irrevocable events that have permanent consequences, such as myocardial infarction and death, as opposed to ‘soft events’, such as hospitalisation for angina. The Framingham studies included a broader composite of hard and soft endpoints. Diagnostic criteria for outcomes in Progetto CUORE and the USA-PRC cohorts followed the WHO-MONICA Study (WHO–MONItoring trends and determinants in Cardiovas-

Table 3 Predictors

| Method | Age | Sex | Smoking | SBP | DBP | Systolic | HDL | Tg | Diabetes | LVEF | Arterial | BMI | Ethnic | Family | SMR | Rh | Arthritis | CHD | Atrial | Anticoag | Biomarkers | Physical activity | Ref of prediction
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Framingham 1976</td>
<td>Years</td>
<td>M/F</td>
<td>Y/N</td>
<td>average of 2 readings</td>
<td>TC</td>
<td>RBS ≥ 7.7</td>
<td>Non-Lab</td>
<td>Y/N</td>
<td>FBS ≥ 7.7</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Framingham 1984</td>
<td>Years</td>
<td>M/F</td>
<td>Y/N</td>
<td>average of 2 readings</td>
<td>SBP alternative</td>
<td>TC</td>
<td>Original</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Framingham 1986</td>
<td>Years</td>
<td>M/F</td>
<td>Y/N</td>
<td>average of 2 readings</td>
<td>SBP alternative</td>
<td>TC</td>
<td>Original</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Framingham 2006</td>
<td>General</td>
<td>Years</td>
<td>M/F</td>
<td>Y/N</td>
<td>average of 2 readings</td>
<td>TC</td>
<td>Original</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROCAM 2002</td>
<td>Years</td>
<td>NA</td>
<td>Y/N</td>
<td>average of 2 readings</td>
<td>TC</td>
<td>FBS ≥ 7.7</td>
<td>Non-Lab</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROCAM 2007</td>
<td>CHD</td>
<td>Years</td>
<td>M/F</td>
<td>Y/N</td>
<td>average of 2 readings</td>
<td>TC</td>
<td>Original</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stroke</td>
<td>Years</td>
<td>NA</td>
<td>Y/N</td>
<td>average of 2 readings</td>
<td>TC</td>
<td>Townsend</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCORE 2009</td>
<td>Years</td>
<td>M/F</td>
<td>Y/N</td>
<td>average of 2 readings</td>
<td>TC</td>
<td>Townsend</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARIC 2003</td>
<td>Years</td>
<td>M/F</td>
<td>Y/N</td>
<td>average of last 2 of 3 readings</td>
<td>TC</td>
<td>Townsend</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progetto-CUORE 2006</td>
<td>Years</td>
<td>M/F</td>
<td>Y/N</td>
<td>average of 2 readings</td>
<td>TC</td>
<td>Townsend</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USA-PRC 2006</td>
<td>Years</td>
<td>M/F</td>
<td>Y/N</td>
<td>average of 2 readings</td>
<td>TC</td>
<td>Townsend</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AsHion 2007</td>
<td>Years</td>
<td>Y/N</td>
<td>average of 2 readings</td>
<td>TC</td>
<td>Townsend</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reynolds-2002</td>
<td>Years</td>
<td>NA</td>
<td>Y/N</td>
<td>self-reported</td>
<td>TC</td>
<td>Townsend</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reynolds-one 2002</td>
<td>Years</td>
<td>NA</td>
<td>Y/N</td>
<td>self-reported</td>
<td>TC</td>
<td>Townsend</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal Heart 2007</td>
<td>men</td>
<td>Years</td>
<td>NA</td>
<td>Y/N or Former</td>
<td>previous diagnosis of hypertension</td>
<td>Townsend</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>women</td>
<td>Years</td>
<td>NA</td>
<td>Y/N or Former</td>
<td>previous diagnosis of hypertension</td>
<td>Townsend</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QRISK 2007</td>
<td>Years</td>
<td>M/F</td>
<td>Y/N</td>
<td>GP record</td>
<td>Townsend</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QRISK-2 2008</td>
<td>Years</td>
<td>M/F</td>
<td>Y/N</td>
<td>GP record</td>
<td>Townsend</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRIPS 2006</td>
<td>Years</td>
<td>M/F</td>
<td>Y/N</td>
<td>average of last 2 of 3 readings</td>
<td>TC</td>
<td>Townsend</td>
<td>LDL</td>
<td>Y/N</td>
<td>Townsend</td>
<td>LDL</td>
<td>TC/HDL</td>
<td>Y/N</td>
<td>Value</td>
<td>2 groups</td>
<td>7/19+</td>
<td>8/19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Shaded areas. Predictors not included in risk score; SBP, systolic blood pressure; DBP, diastolic blood pressure; Sr. Chol, serum cholesterol; LDL, high density lipoprotein cholesterol; Tg, triglycerides; LVEF, left ventricular hypertrophy; Arterial med, antihypertensive medication; BMI, body mass index; Family hx, family history; SMR, socioeconomic; Rh arthritis, rheumatoid arthritis; Atrial fib, atrial fibrillation; No, number; M, male; F, female; Y, yes; N, no; TC, total cholesterol; RBS, random blood sugar; FBS, fasting blood sugar; LDL, low density lipoprotein cholesterol; Non-lab, non-laboratory; NA, not applicable; Cigs, cigarettes; SIMD, Scottish Index of Multiple Deprivation; HbA1c, haemoglobin A1c; hsCRP, high sensitivity c-reactive protein; GP, general practice.

Adjustment for treatment effects

Methods used to adjust for the effect of medication were absent or weak (table 5). The effect of treatment is not fully assessed or adjusted for by any of the reviewed risk scores. Treatment effect includes (1) that which occurs by risk factor modification (eg, blood pressure-lowering medication), (2) that which works independently of risk factors (eg, platelet inhibitors such as aspirin), and (5) that which works by both means (eg, statins). Twelve of the cardiovascular risk score studies (Framingham 1998, Framingham 2008, ARIC, Progetto CUORE, SHS, USA-PRC, Reynolds 2007, Reynolds 2008, Personal Heart, QRISK1, QRISK2, and NHEFS) reported data on prior treatment, but this was mainly limited to antihypertensive treatment. Only seven (Framingham 2008, ARIC, Progetto CUORE, SHS, QRISK1, QRISK2, and NHEFS) included the use of antihypertensive drugs as a risk predictor. The Reynolds studies were the only ones to report prior use of lipid-lowering agents. None of the studies reported on the prior use of platelet inhibitors.

Two treatment effects need to be considered: (1) prior treatment (started before enrolment in the study) and (2) subsequent
treatment started during study follow-up (treatment drop-ins).
None of the risk scores addressed the effect of treatment drop-ins. For early studies, such as the older Framingham Study, this may be minimal. Recent cohorts such as QRISK may have had more than half of their study population receiving treatment with their blood pressure under control (see NHANES data in figure 2).

DISCUSSION

For users of cardiovascular risk scores, this review has two main findings: that cardiovascular risk scores differ considerably in terms of population, predictors and outcomes, which may not match those used by clinicians, and that treatment ‘drop-in’ is poorly accounted for by most rules.

Whichever risk equation they choose, clinicians should know which outcomes are predicted. As the outcomes predicted differ significantly, the risk scores are not interchangeable. For example, the Framingham risk scores predict a broad range of cardiovascular events (including cerebrovascular events), whereas SCORE only predicts fatal cardiovascular events. The Framingham Study risk scores have been criticised for the inclusion of ‘soft’ (subjective) outcomes such as angina, although the Framingham investigators argue that such outcomes estimate the total cardiovascular disease burden and are clinically important to both patient and doctor. Revascularisation interventions may also be criticised as being subjective.

Time is a major obstacle to the use of risk scores by physicians; obtaining more information from a patient will further decrease the use of risk calculators. Of the risk scores, QRISK2 had the most predictors, which included disease conditions such as atrial fibrillation and chronic renal disease. QRISK2 score is designed to use data in the patient’s electronic health record, with imputed values for missing data. However, the proportion with missing data for these factors in the derivation cohorts was substantial (>70% for ethnicity; >60% for cholesterol).

The second limitation is that the effect of treatment has not been considered fully by any of the reviewed risk scores. Treatment decreases the true effect of risk factors on outcomes, as illustrated by figure 3. The combined effects of risk reduction due to treatment can be as much as 50%. If 25% of the population started treatment during follow-up, it would mean...
a population risk reduction of 12.5%. But this would be greater in the high-risk groups, who are more likely to be treated. These differences are similar to those found between QRISK 2 and Framingham (11.6%), which was obtained in a recent validation study of QRISK 2.41

Ideally, a cardiovascular risk score to determine the risk of a cardiovascular event and to stratify patients for risk factor modification should be derived in a population receiving no treatment at the start of and during the study. Such an ideal study is not tenable or ethical. We know of three possible

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Treatment effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Predictors</td>
<td>Prior Treatment</td>
</tr>
<tr>
<td>Measurement</td>
<td>Follow-up</td>
</tr>
<tr>
<td>Framingham 1976</td>
<td>Single</td>
</tr>
<tr>
<td>Framingham 1991</td>
<td>Single</td>
</tr>
<tr>
<td>Framingham 1998</td>
<td>Single</td>
</tr>
<tr>
<td>Framingham 2008</td>
<td>Single</td>
</tr>
<tr>
<td>PROCAM 2002</td>
<td>Single</td>
</tr>
<tr>
<td>PROCAM 2007</td>
<td>Single</td>
</tr>
<tr>
<td>SCORE 2003</td>
<td>Single</td>
</tr>
<tr>
<td>ARIC 2003</td>
<td>Single</td>
</tr>
<tr>
<td>Progetto CUORE 2004</td>
<td>Single</td>
</tr>
<tr>
<td>SHS 2006</td>
<td>Single</td>
</tr>
<tr>
<td>USA-PRC 2006</td>
<td>Single</td>
</tr>
<tr>
<td>ASSIGN 2007</td>
<td>Single</td>
</tr>
<tr>
<td>Reynolds women 2007</td>
<td>Single</td>
</tr>
<tr>
<td>Reynolds men 2008</td>
<td>Single</td>
</tr>
<tr>
<td>Personal HEART 2007</td>
<td>Single</td>
</tr>
<tr>
<td>QRISK 2007</td>
<td>Single</td>
</tr>
<tr>
<td>QRISK 2 2008</td>
<td>Single</td>
</tr>
<tr>
<td>NHEFS 2008</td>
<td>Single</td>
</tr>
</tbody>
</table>

Shaded areas, information not reported; Antihpt, antihypertensive medication; SBP, systolic blood pressure; pred, predictors.
Corrected for change in risk factors by factoring in changes at midpoint of follow-up—that is, 1993/1994.
solutions. First, we could favour the use of older studies, when less aggressive treatment occurred. Second, treatment uptake could be monitored and appropriate adjustments such as the application of a penalised Cox model made to account for the effect of treatment. Until such studies have been performed, study cohorts where there is minimal treatment drop-in during follow-up should be preferred. Alternatively, to minimise treatment drop-in, we could study cohorts with much larger numbers over much shorter periods (Rod Jackson, personal communication).

We have not addressed how risk scores may change over time. However, a common misconception is that the strength of the risk scores change with population health status. Changes in the prevalence of a risk factor should not change the underlying relationship of a risk predictor to a disease outcome. For example, lower rates of smoking will not change the RR reduction due to smoking. Study participants may have changed their risk behaviour—for example, stopped smoking during the study. However, that is another treatment effect and should ideally be measured.

The lack of accounting for treatment makes the use of most cardiovascular risk scores for treatment decisions problematic. We need to examine how doctors use cardiovascular risk scores in clinical practice. If the aim is to discuss with patients the risk of remaining untreated, then the use of the majority of these risk scores would be incorrect.

Strengths and weaknesses of the study

The review was limited to studies in which participants had no previous history of cardiovascular disease and excluded those who were restricted to a disease condition. A prior diagnosis of cardiovascular disease or a disease such as diabetes raises the patient into the high-risk category, removing the need for risk scoring. This has also been advocated by the NICE guidelines, which states that risk equations should not be used for those with a previous history of cardiovascular disease or other high-risk diseases such as diabetes. Furthermore, the majority of these patients would have received treatment, potentially altering study outcomes.

This is a detailed review with a clear and focused question and explicit methodology. The review is particularly relevant to the recent modification of the NICE guidelines and offers the most up-to-date comparison of available cardiovascular risk scores. It has also identified a major gap in risk assessment studies, namely, the effect of treatment.

Strengths and weaknesses in relation to other studies, discussing particularly any differences in results

The 2005 review by Beswick et al included in the appendix of the NICE guidelines identified 110 studies, with 70 meant specifically for application in primary prevention. The difference in the number of studies identified is due to their wider inclusion criteria, which included studies restricted to a disease condition, studies that had participants with prior cardiovascular disease, studies that were recalibrations or modifications of the original cohort study, studies that did not use absolute risk scoring, and studies where the duration of prediction was not specified. More recent studies such as QRISK and Reynolds scores are not included, as their search concluded in April 2005.

Meaning of the study: possible mechanisms and implications for clinicians or policymakers

The recent change in the NICE guidelines has major implications for clinical practice. Selecting an appropriate risk score is likely to be difficult because of the wide variation in available risk scores. This review has attempted to address the problem by comparing features of all the cardiovascular risk scores.

Unanswered questions and future research

This review did not address the effectiveness or accuracy of the cardiovascular risk scores, which would require a review of validation studies instead of the original cohort studies. The reviews by Beswick et al and Brindle et al have tried to assess this, but do not include the more recent studies. However, it should be pointed out that any validation study of risk scores might also suffer the same problem of treatment drop-in, which would attenuate the true cardiovascular risk. Researchers should also attempt to address the effect of treatment in future studies in this field by collecting data on treatment at the start and during the course of cohort studies, as this will impact on the final outcomes.

Authors’ conclusions

Implications

These results show that there are substantial differences in the available cardiovascular risk scores in terms of study characteristics, predictors and outcomes. The effect of treatment on the study population has not been taken into account by these cohort studies. Further study is required for the translation of such research into clinical practice.

Funding

This study was funded in part by the NHSCR Project Grant 511217 and Prof Glazoun’s NHSCR Fellowship.

Competing interests

None.

Contributors

SM, JD and PG are responsible for the study concept and design. SM drafted the manuscript, and JD and PG undertook critical revisions of the manuscript. All three authors read and approved the final manuscript and as such act as guarantors for the study.

Provenance and peer review

Not commissioned; internally peer reviewed.

REFERENCES

30. Nissen SE. Cardiovascular outcomes in randomized trials: should time to first event for “hard” end points remain the standard approach? J Am Coll Cardiol 2008;54:2263–5.

Cardiovascular risk scores do not account for the effect of treatment: a review

S M Liew, J Doust and P Glasziou

Heart 2011 97: 689-697
doi: 10.1136/hrt.2010.220442

Updated information and services can be found at:
http://heart.bmj.com/content/97/9/689.full.html

These include:

References
This article cites 41 articles, 23 of which can be accessed free at:
http://heart.bmj.com/content/97/9/689.full.html#ref-list-1

Open Access
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-commercial License, which permits use, distribution, and reproduction in any medium, provided the original work is properly cited, the use is non commercial and is otherwise in compliance with the license. See:
http://creativecommons.org/licenses/by-nc/2.0/ and
http://creativecommons.org/licenses/by-nc/2.0/legalcode.

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections

Unlocked (764 articles)
Drugs: cardiovascular system (24141 articles)
Epidemiology (5420 articles)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/