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Abstract. This paper proposes a method to simplify a computational model from 
logistic regression for clinical use without computer. The model was built using 
human interpreted featrues including some BI-RADS standardized features for 
diagnosing the malignant masses. It was compared with the diagnosis using 
only assessment categorization from BI-RADS. The research aims at assisting 
radiologists to diagnose the malignancy of breast cancer in a way without using 
automated computer aided diagnosis system.  
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1   Introduction 

Mammography is considered the most reliable method of early detection. However, in 
the earliest stage the visual clues are subtle and varied in appearance, making 
diagnosis difficult, challenging even for specialists. The benefits of early detection 
generate a powerful motivation for researchers to develop automated detection and 
diagnosis systems to assist specialists and radiologists.  

A historical review of computer-aided diagnosis (CAD) has been given by Doi [1], 
indicated that CAD has become a part of the routine clinical work for detection of 
breast cancer on mammograms at many screening sites and hospitals in the United 
States. The requirement of high sensitivity and high specificity is difficult to meet for 
researchers who are developing computer algorithms for detection of abnormalities on 
radiologic images. It would not be possible for most advanced countries to employ the 
current computer results for automated computer to make the diagnosis decision [1].  

A number of investigators have reported positive findings on the usefulness of 
CAD in detecting various lesions, including clustered microcalcifications [2] and 
masses [3] in mammograms, based on the evaluation with ROC (receiver operating 
characteristic [4])   

Recently, the effectiveness of computer assisted detection systems have been 
assessed for clinical use. In both the studies of Taplin et al [5] and Ko et al [6], CADs 
were used as the assistants to expert radiologists. Despite the differences between the 



studies, they both indicated the possible benefit and some of the issues with the 
clinical use of current CAD technology. Taplin et al used the ImageChecker M2 1000 
system (version 2.2, R2 Technology) [7, 8] as the assistant to the radiologists. They 
compared the reading from an expert radiologist with or without CAD following the 
BI_RADS1 criteria. The conclusion drawn from their study was that the CAD did not 
affect overall sensitivity, but its effect differed for visible masses that were marked by 
CAD compared with those were not marked by CAD.  The study also showed that the 
CAD had a greater effect on both specificity and sensitivity among radiologists who 
interpret more than 50 mammograms per week. Ko et al [6] prospectively assessed 
the clinical usefulness of CAD in the interpretation of screening mammograms. The 
CAD used in their study was iCAD MammoReader [9]. This study showed that use of 
CAD can increase cancer detection rate by at least 4.7% and sensitivity by at least 4% 
with significant increased recall rates and not significant effect on positive predictive 
value for biopsy.  

The effect of CAD on double reading of paired screen-film and full field digital 
screening mammograms was evaluated by Skaane et al [10].  The CAD (Image 
Checker, version 8.0 R2 Technology)  showed the potential to increase the cancer 
detection rate for both FFDM (full field digital mammography) and  screen-film 
mammography in breast cancer screen performed with independent double reading. 
Georgian-Smith et al [11] compared the CAD with a blinded human second reader for 
detection of additional breast cancer not seen by a primary radiologist. The research 
aimed to compare the practice of a human second reader with a CAD reader for the 
reduction of the number of false-negative cases resulting from review by a primary 
radiologist. A conclusion from their small sample sized investigation was that a 
human second reader or the use of a CAD system can increase the cancer detection 
rate, but no statistical significant difference between the two.  

Measuring actual improvement of cancer detection is not a simple task and the 
results of these studies are dependent on the performance of the CAD itself, the 
population of cases to which it is applied, and the reviewers who use it [6].  CAD has 
been used as a complementary tool to mammography, prompting the reader to 
consider lesions on the mammogram that may represent cancer. However emerging 
evidence and improved CAD technology are likely to help define its role in breast 
screening [12]. 

As we know, the commercialized CADs have not been world widely accepted yet, 
for example, there have not CAD used in Australia. However, radiologists would like 
the ability of CAD to change the contrast of a mammogram [13]. In this situation, we 
would like to present a simple model to assist radiologists for their diagnosis without 
having to use computer.  

                                                        
1 ACR stands for the American College of Radiology. BI-RADS stands for Breast Imaging 

Reporting and Data System, which contains a guide to standardized mammographic 
reporting including a breast-imaging lexicon of terminology, a report organization and 
assessment structure and coding system. 



2   Methodology 

Various classification techniques have been applied for breast abnormality 
classification including neural network, KNN (K-neariest neighbour), logistic 
regression, and support vector machines. In our previous study [14, 15],  we also 
tested various classification techniques including discriminant analysis, logistic 
regression and  neural networks, and compared the different set of features for breast 
cancer diagnosis in mammography. Our study showed that logistic regression 
performs very well for breast abnormality classification in mammography, though the 
theory is not complicated. 

2.1   Logistic regression 

Logistic regression is useful for situations in which we want to predict the presence 
or absence of a characteristic or outcome based on values of a set of predictor 
variables. It is similar to the linear regression model but is suited to models where the 
dependent variable is dichotomous [16]. It  is widely used in medical research since 
many studies involve two-category response variables [17].   

Logistic regression model for a binary dependent variable can be written as 
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where in this research, y=1, if the patient has malignant tumor; y=0, if the patient 
has benign tumor.  

E(y)= P=probability of the breast area is malignant    

x1, x2….. xk  are quantitative or qualitative independent variables. 

2.2   Features for classification 

Researchers have extracted different features from the mammograms for cancer 
diagnosis, such as region-based features [18], shape-based features [19], image 
structure [20], texture based features [21] and position related features [22]. In our 
previous research, we extracted 25 features including computer extracted features and 
human interpreted features [14, 15]. The human extracted features are the features 
interpreted from the radiologists including the ones interpreted following the BI-
RADS lexicon. The computer extracted features are the commonly used which are 
statistically calculated based on the grey-level value distribution from the 
mammograms. These features were used to build different classification models for 
breast cancer diagnosis. Our research result showed that human extracted features 
contributed to the diagnosis more significantly than the computer extracted  
features[23].  

The BI-RADS was developed to standardize mammographic reporting, to improve 
communication, to reduce confusion regarding mammographic findings, to aid 



research, and to facilitate outcomes monitoring [24, 25].   The assessment 
categorization from the BI-RADS has been recommended as a predictor of 
malignancy [26].  Lo et al [27, 28] developed the computer-aided diagnostic 
techniques that took consideration the description of lesion morphology according to 
BI-RADS. The models were reported that performed at a level comparable to or better 
than the overall performance of the expert mammographers who originally interpreted 
the mammograms.  

In this paper, we present a simplified model derived from a logistic regression 
equation built on human extracted features to assist radiologists for breast cancer 
diagnosis. 

3   Materials  

Digital Database for Screening Mammography (DDSM) [29] from University of 
South Florida was used for this research. In DDSM, the outlines for the suspicious 
regions are derived from markings made on the film by at least two experienced 
radiologists. DDSM provides some information related to the marked masses using 
the ARC BI-RADS definition. Such as assessment, density, mass shape and mass 
margin are all described using the standard terminology in BI-RADS. Patient age and 
some others information involved in the digital mammogram, such as subtlety, are 
also provided in related files. These information are considered that can be important 
for distinguishing the malignant and benign masses or calcifications 

A total of 200 mass suspicious areas were extracted from DDSM for the 
experiments. It includes 100 malignant case and 100 benign ones. The mammograms 
used in this study are all scanned on the HOWTEK scanner at the full 43.5 micron per 
pixel spatial resolution. 

Seven human interpreted features related to mass suspicious areas are patient age, 
breast density, mass shape, mass margin, assessment, subtlety, and calcification 
association. Except “calcification association” (Calc-asso) was created by us in our 
research, others are obtained from DDSM. Calc-asso describes how the mass is 
related to a calcification, for example, some of the masses are also marked as 
calcifications. In this research, we simply categorize calc-asso as ‘yes’ or ‘no’ for 
having the association or not having the association. Some of BI-RADS features are 
described with text in the database. We assign them to the different categories with 
numbers.  For example, “1” represents “round” and “2” is used to represent “oval” for 
the shape feature. These variables are treated as categorical (nominal) variable for 
building the models.  

4   Implementation 

4.1   Cross validation for comparison of the models  

The assessment categorization from the BI-RADS as a predictor of malignancy was 
tested by Orel et al [26].  In their research, 1312 localization (mass areas) were 



investigated. The PPV (positive predictive value) was 0% for assessment category 2 
(refer to BI-RADS), 2% for category 3, 30% for category 4 and 97% for category 5. 
In our research, we tested logistic regression model built with all 7 human extracted 
features. This model is compared with the model built with only 6 features (out of 7 
features excluding “assessment”), and with using only assessment categorization from 
the BI-RADS for prediction of malignancy.  

In this study, the logistic regression models were constructed based on the set of 
features with iteratively reweighted least squares (IWLS) method using R (version 
10.1.0),  a free software environment for statistical computing and graphics [30]. 5-
fold cross validation was conducted to compare the performance between the models 
using 7 features, 6 features or assessment categorization alone. Table 1 shows the 
validation results from the models using different sets of features. In 5 splits of the 
datasets, every split used the different 40 cases out of the whole 200 cases as testing 
and the rest for training. 

 

Table 1.  Areas under the ROC from different Models 

7-features* 6-features** “assessment” only Dataset 
(split) training testing training testing training testing 

1 ������ ������ ������ ������ ����	� ������

2 ���
�� ������ ������ ������ ������ ������

3 ���
�� ������ ���
	� ���
�� ������ ������

4 ���

� ���
�� ���
�� ������ ������ ������

5 ���
�� ����	� ������ ����	� ������ ������

Mean ���

� ������ ���
�� ������ ������ ������

Standard 
deviation ����
� ������ ������ ������ ������ ���	��

*7-features: age, density, shape, margin, subtlety, calcification association and assessment; 
**6-features: age, density, shape, margin, subtlety and calcification association 

4.2   Models to be Recommended to Radiologists  

From table 1, we can see that with 7 features combining the 6 human extracted 
features and the assessment categorization from the BI-RADS predict better than 
using only 6 human extracted features or using only the assessment categorization 
from BI-RADS (P<0.05, from t-tests).  We used the whole set of 200 cases to build a 
final logistic regression model with these 7 features. It is shown below:  

log(p/(1-p))= -41.9+C1*age+C2*density+C3*mass_shape 

+C4*margin+C5*subtlety +C6*Cal_asso +C7*assessment 



p is the predicted probability of the mass being malignant. C1 to C7 are the 
coefficient values for the different variables in the model. They take different values 
when the variables are in different categories. See table 2 for the coefficient values in 
the final logistic regression model. The coefficients of the independent variables were 
simplified to an integer weight in order to be easily managed by radiologists for 
assisting the diagnosis. For example, a 55 years old patient has the mammogram 
showing a mass in “round” shape, obscured margin, subtlety 1, is seen as also 
calcifications and is assessed as category 3. The total diagnostic weight will be 
2+2+0+1+15+0=19.  

 

Table 2.   Logistic Regression Model Built with the Whole Dataset 

Variable Category Coefficient 
(C1-C7) 

Simplified 
Weight 

Age  Over 50 ���	� ��

1 	���� ��

2 	��
� ��Density  
3 	���� ��

Round 	���� ��

Lobulated 	���� 	�Mass shape 
Irregular 	���� ��

Circumscribed   	����� 	��

Microlobulated     	
��
� 	��

Ill_defined   	
���� 	
�

Mass 
margin 

Spiculated ������ ���

1 	���� 	�

2 	���� 	�Subtlety 
3 ����� 	�

Cal-asso Yes 	����� 	��

4 	����� 	��
Assessment 5  ���	�� ���

Note: the variable values are interpreted following the BI-RADS 
standard or recoded in DDSM database. 
Assessment categories from BI-RADS: 1- negative, 2- benign, 3- 
probably benign, 4- suspicious abnormality, 5- highly suggestive 
malignancy.�

5   Results and Discussion 

Figure 1 shows the ROC curves produced from the simplified model, and is compared 
with logistic model with all 7 features and with assessment categorization alone for 



diagnosis. We can see the area under the simplified model is obviously higher than 
that from only assessment categorization (0.961 vs 0.843). 

Table 3 shows the diagnostic performance from the simplified model built with our 
200 cases and the result from using only assessment value for diagnosis. It can be 
used as the second diagnosis reference on top of the diagnosis with assessment 
categorization alone. For instance in our above example, though the assessment 
category is 3 which represent only 13% specificity for malignancy, the model from 
the logistic regression shows the high probability (specificity 100% with total weight 
score 19) of it being malignant.   

 
 

Figure 1:  ROC and the areas under the curves from the different models 



Table 3.  Performace of Logistic Regression Model Built with the Whole Dataset and using 
Assessment Categorization Alone 

Total 
Weight 
score 

Sensitivity Specificity Youden 
index 

�� 	���� ����� �����

	�� 	���� ����� �����

		� 	���� ����� �����

	�� 	���� ����� �����

	�� ����� ����� ���	�

	�� ����� ����� ��

�

	�� ����� ����� ���	�

	�� ����� ����� ���	�

	
� ����� ����� �����

	�� ����� ����� �����

Final Diagnostic 
Model 
Result 

	�� ����� 	���� �����

�� 	���� ����� �����

�� 	���� ��	�� ��	��

�� ����� ����� �����

Diagnosis with 
only assessment 
value 

�� ����� 	���� �����

From the results we can see, especially when the assessment category falls to 3 
(probably benign), the proposed model will give a reference for the diagnosis. Need to 
mention, the model proposed in the paper is just a preliminary model built based on 
only 200 masses which do not cover all the possible features of the mammograms. 
More variety of the dataset will be used in our future research and aim to build a 
clinical evaluated model for practical use. 
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