
Figure 6: Parameterization of the Graph Window.

Figure 7: Expansion of the Transformed Polynomial.

p(x), we chose to label the parent polynomial function p(x) for the
double entendre and mnemonic where the dependent variable p repre-
sents both “polynomial” and “parent”. In a similar fashion, the final
transformed function is billed as f(x) since it is the final function and
it is in the family of functions of p.

4. Polynomial Expansion In the top right-hand corner of each work-
book is the expanded form of the polynomial, based off of the Constants
Election data that the students feed into the highlighted cells. Further
exercises could be developed here to help tie together the concepts of
the Function Transformations Activity and the Factors of Polynomials
Activity workbooks. Since both of these workbooks include the ex-
panded forms of the polynomials, relating the expansions would serve
as a bridge between the two activities.

5. Function Tables Finally, below the Polynomial Expansion section are
the 6 function tables that will produce the numerical values determined
by the choices of a, b, c, and d as elected by the students. These tables
are what we use to generate the graphs of each transformation and the
parent function p.

The students are guided through a step-by-step process, outlined below,
to transform p into f . Each function transformation is color coded to
help identify the transformation to its graph, beginning with p being
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Figure 8: Cubic Parent Graph p(x) = x3.

color coded grey, as depicted in Figure 8.

3.1 Cubic Transformations Activity

We outline the general ideas and processes for the transformations activities
using the cubic polynomial workbook as our model. The basic principles
are the same, and while the activities may feel redundant, it is deliberate
that the questions we ask in the cases of the quadratic, cubic, and quartic
polynomials remain the same. This is to affirm the roles that a, b, c, and d
play in the transformations of a parent function, regardless of the function
itself.

Before we describe the general process for this activity, we offer a brief
discussion of the ranges that a, b, c, and d may assume.

While the ranges of each of these constants may appear to be limited,
the values are not restricted to integers. The rationale in limiting the range
on the constants is solely for the convenience of ensuring that the Graph
Window remains within manageable tolerances. Indeed, given the rate at
which the polynomials grow, an unrestricted choice of a, b, c, or d could
quickly escalate out of control. For instance, simply relaxing the conditions
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of either b or c to a range between −10 and 10 could result in terms of the
polynomials containing factors as large as magnitudes 100,000 in the case of
the quartic. In fact, even magnitudes as large as 1,000,000,000 could arise
if the conditions of both b and c are relaxed to a range of −10 to 10 in the
quartic! To this end, we have set the following ranges:

1. a ∈ [−10, 10]

2. b ∈ [−5, 5]

3. c ∈ [−5, 5]

4. d ∈ [−10, 10]

The tolerance on both a and d is due to their placement within the polyno-
mials allowing for them to be more relaxed. Below, we describe this activity’s
process.

1. To begin, the students are asked to multiply p by a non-zero constant a
greater than or equal to −10 but less than or equal to 10, and a should
not be equal to 1.

Once the students have chosen a value for a and entered it into the
highlighted cell of the Constants Election section, a new graph will
appear in the Graph Window. This new function is color coded blue in
the Excel workbook to help the students identify what effect a scalar
multiple of a function has on the graph of the function by comparing
the new blue function to the original grey, exemplified in Figure 9.

2. Next, we ask the students to multiply a non-zero constant b greater than
or equal to −5 but less than or equal to 5 by the independent variable
x in the parent function p. The graph and function associated with the
effects of b is color coded pink. At this point, assuming reasonable and
good choices for a and b have been made, four graphs should now be
displayed: the original parent function p(x), family members a · p(x),
and p(b · x), and a new red graph. Such a graph can be witnessed in
Figure 10. The red graph is the composite f(x) = a · p(b · x). The goal
is to have the students eventually formulate the conjecture that f(x)
reacts to all of the transformations applied to p(x).
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Figure 9: Scalar multiple of p(x).

Figure 10: Scalar multiple of x.
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Figure 11: Constant added to x.

3. After some anticipated trial and error, the students are asked to then
choose a non-zero constant c to add–or subtract–to the independent
variable x. As with a and b from above, the window for choice of
c is restricted to being greater than or equal to −5 but less than or
equal to 5. Upon entering a choice for c, a new graph should appear
in the graph window, color coded green. This new graph is associated
with the function p(x− c). Here, the students are asked to make their
observations about the reactions that a · p(x) [blue], p(b ·x) [pink], and
f(x) [red] experience at the introduction of p(x− c). At this point, five
graphs should now be visible in the graph window as demonstrated in
Figure 11.

4. The final transformation, represented by the color coding purple, is a
constant d added to the parent function p(x). That is, the function
p(x) + d. Once a non-zero constant between the values of −10 and 10
is entered for d, the graph window will display up to six graphs: p(x)
[grey], a · p(x) [blue], p(b · x) [pink], p(x− c) [green], p(x) + d [purple],
and f(x) [red]. Figure 12 shows an example of this.

The students are then asked to continue to vary the parameters on a,
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Figure 12: Constant added to p(x).

b, c, and d one at a time and to record their observations about the result-
ing graphs, placing particular emphasis on the parent graph p(x) and the
resulting composite function f(x).

3.2 Quadratic and Quartic Transformations

The aforementioned process for transforming a cubic function is to be repli-
cated in the cases of the quadratic and quartic functions. An example of
quadratic transformations where a = −2.00, b = 1.50, c = −1.00, and
d = 4.00 is displayed in Figure 13, while Figure 14 exemplifies quartic trans-
formations where a = −0.80, b = −0.50, c = 0.75, and d = 5.00.

As before, the following exercises are meant to be completed one at a
time, with students sharing their observations with the group after each
exercise. The italicized questions are follow-up questions in case the student
observations do not address particular behaviors of the transformations of
the polynomials.

1. Enter a real non-zero number between −10 and 10 for the scalar a.
What do you observe about the resulting polynomial? How does it
compare to the parent polynomial function? Repeat this step using
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Figure 13: Example of a transforming the parent quadratic function p(x) =
x2.

Figure 14: Example of a transforming the parent quartic function p(x) = x4.
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different values for a. Formulate a conjecture about how a transforms
the parent function.

If you have not already, try the following:

(a) Enter a negative value for a. What happens to the new graph as
compared to the parent polynomial?

(b) Enter a value for a such that 0 < |a| < 1. What happens to the
new graph as compared to the parent polynomial?

2. Enter a real non-zero number between −5 and 5 for the scalar b. What
do you observe about the resulting polynomial? How does it compare
to the parent polynomial function? Repeat this step using different
values for b. Formulate a conjecture about how b transforms the parent
function.

If you have not already, try the following:

(a) Enter a negative value for b. What happens to the new polynomial
graph as compared to the parent polynomial graph?

(b) Enter a value for b such that 0 < |b| < 1. What happens to the
new polynomial graph as compared to the parent polynomial graph?

3. Enter a real non-zero number between −5 and 5 for the constant c.
What do you observe about the resulting polynomial? How does it
compare to the parent polynomial function? Repeat this step using
different values for c. Formulate a conjecture about how c transforms
the parent function. If you have not already, try the following:

(a) Reset the initial values for a and b to both be 1. Make note of the
x-intercept(s) of the parent polynomial graph. Varying the values
for c only, what happens to the x-intercepts of the new polynomial
graph as compared to the parent polynomial graph?

(b) The common approach to expressing a polynomial function trans-
formation is f(x) = a · p(b · (x− c)) + d. Notice the sign preceding
c. How does the resulting transformation caused by c differ from
the sign preceding c? Algebraically, what is happening?

4. Enter a real non-zero number between −10 and 10 for the scalar d.
What do you observe about the resulting polynomial? How does it

16

Spreadsheets in Education (eJSiE), Vol. 10, Iss. 1 [2017], Art. 2

http://epublications.bond.edu.au/ejsie/vol10/iss1/2



compare to the parent polynomial function? Repeat this step using
different values for d. Formulate a conjecture about how d transforms
the parent function.

If you have not already, try the following:

(a) Reset the initial values for a and b to both be 1 and the initial
value of c to be 0. Make note of the y-intercept of the parent
polynomial graph. Varying the values for d only, what happens
to the y-intercept of the new polynomial graph as compared to the
parent polynomial graph?

Once the students have verified that their conjectures are correct with
the instructor, this activity can serve as the springboard into more general-
ized function transformation theory for non-polynomial functions including
exponential, logarithmic, and trigonometric functions.

4 Conclusion

These spreadsheet activities were designed using a constructivist approach
to help students build an algebraic, numerical, and graphical understand-
ing of zeros and transformations of polynomial functions. Since Microsoft
Excel is a common platform, the software should not be a barrier as long
as students have their own computers or the activity occurs in a computer
lab environment. Students who are familiar with Excel should have little
difficulty approaching these activities. Learners sometimes have issues with
the cognitive load of learning software and mathematics concurrently [2].
However, for these activities, the only input to the spreadsheet is numerical
and the output is graphical and algebraic using standard notation. These
activities provide a concrete hands-on introduction to theory and operations
involving polynomials to enhance the learning process.
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