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A Hybrid Multi-objective Extremal Optimisation Approach for
Multi-objective Combinatorial Optimisation Problems

Pedro Gémez-Meneses, Marcus Randall and Andrew Lewis

Abstract— Extremal optimisation (EO) is a relatively recent
nature-inspired heuristic whose search method is especially
suitable to solve combinatorial optimisation problems. To date,
most of the research in EQ has heen applied for salving
single-objective problems and only a relatively small number
of attempts to extend EO toward multi-objective problems.
This paper presents a hybrid muiti-objective version of EO
(HMEQ) to solve muiti-objective combinatorial problems. This
new approach consists of a multi-objective EQ framework, for
the coarse-graim search, which contains a novel multi-objective
comhinatorial local search framework for the line-grain search.
The chosen problems to test the proposed method are the mulii-
objectlve haapsack problem and the multfi-ohjective quadratic
assignment problem. The results show that the new algorithm is
able to obtain competitive results to SPEA2 and NSGA-11. The
non-dominated points found are well-distributed and similar or
very close to the Parcto-front found by previous works.

1. INTRODUCTION

Nature-inspired methods like extremal optimisation (EQ)
have emerged in response to solve those optimisation prob-
lems with which conventional mathematical technigues have
difficulties. This may be as a result of the complex shape of
their landscapes or the limitation of current computational
systems. Most combinatorial optimisation problems (COPs)
have been classified as A'P-hard and new heuristics like EQ
are giving a new perspective on solving them instead of using
traditional evolutionary algorithms (EAs). EQ has the feature
of requiring only one algorithm-specific parameter and it uses
a minimal amount of memory, which can often lead to a
lower computation time. At each iteration EQ applies the
principle of eliminating one of the weaker or less adapted
solution components and replacing it by a random value.

Initially EOQ was applied to problems such as graph bi-
partitioning, 3-colouring graph, spin-glass, and max-cut [1],
[2]. Additionally, some exploratory work on other COPs
such as the travelling salesman [3}, [4], multidimensional
knapsack [4], [5], maximum satisfiability [6], generalised
assignment [7}, bin packing [83, [9], [10], and dynamic
problems [11] has been undertaken. Hybrid algorithms have
also been developed in which aspects of EO ate combined
with other methods such as particle swarm optimisation [12},
and genetic algorithms [13]1. EO is now being extended to
solve multi-objective problems [14], [15].
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A hybrid multi-objective extremal optimisation (HIMEQ)
proposal is presented herein which finds solutions through
the collaborative use of EQ with a local search framework,
both suitable (in principle) to solve a wide range of multi-
objective combinatorial optimisation problems (MCOPs),
The EC part of this approach camries out a coarse-grain
search on the landscape that allows it to find new non-
dominated points as the solution moves closer to the Pareto-
front. The EQ movement permits the exploration of the
search space without becoming stuck in a particular region of
the landscape. The local search part helps to develop a fine-
grain movement to obtain a better approximation toward the
Pareio-front as well as to produce a greater diversification
of the points towards the ends of the Pareto-front. The
advantage of this proposal is its simplicity of implementation
due to its single parameter and selection procedure,

Given this new approach, we test the behaviour of HMEO
on two MCOPs. They are the multi-objective knapsack
problem (MKP) and the multi-cbjective quadratic assignment
problem (MQAP). The results show that the new hybrid
nulti-objective algorithm works well with respect to con-
vergence and distribution of solutions. Thus, HMEQ can be
a potential choice to efficiently solve MCOPs.

The paper is organised as follows. Section 2 gives a
summary of EO. Section 3 introduces the basic concepts
of multi-objective problems and Pareto optimatity. Section
4 presents two benchmark problems to validate the proposal,
Section 5 explains the HMEQ framework to solve MCOPs.
Section 6 shows the results obtained and presents an analysis
of them. Finally, in Section 7 we conclude and discuss the
future work arising from this study.

II. EXTREMAL OPTIMISATION

EO is an evolutionary meta-heuristic proposed by Bak
and Sneppen [16] based on a medel of co-evolution be-
tween species. This model describes species’ evolution via
extinction events as a self-organised critical (SOC) [L7]
process. SOC tries to explain the manifestation of complex
phenomena in nature such as the formation of sand piles and
the occurrences of earthquakes [18]. The main characteristic
is that a power law describes the events in the sysfem.
Simply put, these systems have some crifical points that are
configured in a particular way. When an event converges
towards one of these points, a critical state is reached which
triggers a series of changes over the elements near to the
critical point. Using self-organisation the system is able to
reach a new state of equilibrium. Finally, it evolves in a



transient period of stability until the next critical point is
reached.

A pood way to understand EQ’s characteristics is to
compare it with another well-known method such as genetic
algorithms (GAs) [19]. First, a GA commonly has a set
of parameters that need to be tuned for proper operation;
however, in EO only one specific parameter must be tuned.
Second, in BO the fitness value is not calculated for each
stmcture that represents a solution as in a GA but for each
component of the structure. Each component is evaluated
according to its contribution in obtaining the best solution.
Third, canonical EQ works with a single solution instead of
a population of solutions as in GA. Last, EOQ modifies the
worst part of the solution while in contrast GA promotes a
group of elite solutions.

There is only one BO specific parameter that is often
referred to as = [20]. This parameter is used probabilistically
to choose the component value to be changed at each iteration
ofthe algorithm. The algorithm ranks the components and
assigns to them a tumber from | to n using the fitness of
each one (where n is the number of components). There-
fore, the fitness must be sorted from the worst fo the best
evaluated. Then a selection method such as roulette wheel
(RWS) is used to choose the component whose value will
be changed to a random value according to the probability
calculated for each component as shown in Equation 1. If
the new component makes the solution the best found so
far, according to the evaluation function, then this selution
is saved as Xp.;. The BO process is shown in Algorithm 1.

Pi=1i7 Vi 1<ig€n, 720 [¢)]

where:
n is the total miumber of components evaluated and ranked, and

P; s the probakbility that the i** component is chosen,

Algorithm 1 Standard EQ for minimisation problem

Generate an initial random solution X={(:1,z2,...,&n)

Set Xpost = X

Generate the probabilities aray P according to Equation 1;

for a preset number of iterations do
Evaluate and rack fitisess A; for each =; from worst te best, T < ¢ < n;
Seleet compoencut § based ou the probability of its rank P; using RWS;
x; = Generate a random apprepriate value that is not equal to zj;
Evpa(X) = Bvaluate the new solution;
if Bva{X) < FBva{Xpos) then Xy = X,

end for

Return Xpeer and FBua{Xpest )

III. MULTI-OBJECTIVE OPTIMISATION PROBLEMS

Many real-world optimisation problems have several op-
tima (maximum or minimum). These optima are ecqually
important, either by having the same tmerical value, or
because they are not able to establish a criterion to decide
which of them is better. Normally, for multi-objective opti-
misation problems (MOPs), the decision conceming the most
appropriate solution is a contextual one and is often left to
a human decision-maker.
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Multi-objective optimisation can be defined as the chal-
lenge of discovering a collection of solutions that satisfies
all constraints at the same time and maximises or minimises
each one of the objective functions. Generally these ohjective
functions are in conflict with each other in terms of their
evaluation. Therefore, a multi-objective optimisation problem
must find a set of solutions that optimise ail the objective
functions for a particular problem.

The multi-objective optimisation approach resembles
single-objective optimisation. The problem is to find a so-
lution vector & such that:

AMinimise/Mazimise f(i)

TeEFCR
where;, . . )
& is a vector of decision variables (1, ..., ) that represents
a solution,
F{Z)  is a vector of objective functions (f1(Z}, ..., fr(T)) 1o be
maximised or minimised,
F is the feasible search space limited by the constraints,
R ts the entire search space.

The more accepted concept of optimality in a multi-
objective field is the so-calied Pareto optimality. This notion
is based on the concept of dominance which is defined
below [21].

Definition I (Pareto Dominance): For a minimisation
problem, a solution & dominates another solution g , if and
only if, 5 is partially less than &' and there exists at least
an objective where 7 is absolutely less than &, denoted by
F<a.

Once the concept of Pareto dominance has been defined
an explanation about when a solution is a Pareto-optimal is
given next.

Definition 2 {Pareto-optimal): A solution s* is Pareto-
optimal, if and enly if, there is no other solution & which
dominates it. That is, A5 € F : 5~ &%

After some optimisation process several Parefo-optimal
solutions may be found. The set of results that gathers all of
the Pareto optimal solutions is known as the Pareto optimal
set {P*).

Definition 3 (Parelo optimal set): The Pareto optimal set
(P*) is the set of all Pareto optimal solutions s* such that
there is not a solution § that f(8) < f(s*).

The person that chooses the final solutions from the Pareto
optimal set for a particular problem is the decision-maker.
The vector that satisfies these definitions is known as the
Pareto-front, Thus, for a given multi-objective problem f{)
and a set of Pareto-optimal solutions P*, the Pareto-front is
defined below.



Definition 4 (Pareto-front): Pareto-front PEF™ is the set
P* of all solutions that are Pareto-optimal for a given
problem f{Z).

IV. BENCHMARK PROBLEMS

This section presents a concise description of two repre-
sentative MCOPs classified as AP-hard which are used to
validate the proposed method. These are the multi-objective
knapsack problem and the multi-objective quadratic assign-
ment problem.

A. Multi-objective Knapsack Problem

The knapsack problems (KP)} has widely been used as a
betichmark problem to compare new general purpose meta-
heuristics, Also, we can find several real-world problems
that can be modelled by a KP, specially those that must
assign a series of items linked with a profit and cost to
a resource (knapsack) with limited capacity [22]. The idea
is'to maximise the profit without overloading the resource
capacity,

The multi-objective version of the classical 0/1 KP can be
obtained by adding more knapsacks to the problem. Formally,
it can be represented as:

Maximise f{Z) = {/1(&), FH&), ..., F™{E)}
with
n
M@ = Dopgw, Vi 1Sj<m
i=1
it
Subject to S wgwi e, Vi O1Ligm
i=1
ze{0,1}, Vi 1<i<n
where; i i . i
pij s the profit of item % in knapsack j,
wiy s the weight of item 4 in knapsack 7,
c; is the capacity of Ihe knapsack 7,
T is the solution vector (w3, ®2,...,Txn), and
B is the #** decision variable in the solation wvector,

1 if the item is in the solution, 0 otherwise.

B. Multi-objective Quadratic Assighment Problem

The quadratic assignment problem occurs in applications
such as layout of malls, hospitals and airport ierminals,
location of electronic components in an integrated circuit,
distribution of resources in a collection centre and any other
case where it is necessary to assign a set of facilities to
specific locations. The objective is to minimise the cost
associated with the flows of items amongst facilities and the
distance between these.

When we have two or more different kinds of flows or
facilities that must be assigned to a location then we are
working with a MQAP. For instance, in a hospital we want to
simultaneously minimise the flow of doctors, patients, nurses,
visitors, equipment, and so on.

Formally, the MQAP can be represented as:

Minimise C{7) = {CY(#), C2(#),..., 0™}, Feh
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with
nn

M= N thans, 1<k<m

i=1j=1

where:
m is the rumber of objectives or flows,
n is the number of facilities/locations,
i is the location of facility 4 in permutation &,
9} is the set of all permutations,
bk, is the k%P flow from facitity # to facility 7, and
4w, Is the distance between location of facility ¢

and location of Tacility 4.

V. HYBRID MULTI-OBJECTIVE EQ

Previous research applying EO to COPs has shown the
advantages of complementing EO with a local search mech-
anism [5], [8], [9], [10]. This section shows how HMEO is
implemented to deal with MCOPs, First, the multi-objective
combinatorial local search framework (MCLS) will be de-
scribed and then the multi-objective EQ framework.

A. Multi-objective Combinatorial Local Search Framework

Most multi-objective local search methods in the literature
use genetic algorithms. For these, the two approaches more
often developed are based on Pareto ranking and weighted
scalar fitness functions [23]. Comparative studies showing
the advantages and disadvantages of both tecbnigues can be
found in Ishibuchi and Narukawa [23] and Jaszkiewicz [24].

Because our area of interest is focused on combinatorial
problems, our goal in this paper is to discover novel ideas
that can be applied in a general way to MCOPs. Observing
the previous analysis of the two local search techniques
used in evolutionary multi-objective optimisation (EMO) we
contribute a new, simpler approach in a effort to offer a new
alternative to be used for MCLS.

The MCLS framework proposed is simple. Modifying and
mixing the concepts of the weighted scalar fitness and the
lexicographic ordering we decide to change the weighted
veclor by a probability vector which is filled with random
values P(m)yana ~ U{1,0). This vector is used to choose
an objective based on its assigned probability P; using RWS.
As most combinatorial problems explore the neighbourhood
of the Jandscape using a swap operator through a double
traverse of the solution vector, a single local search on the
objective chosen will be done by each single traverse of the
solution vector, Before each single traverse is started, a new
objective function is selected which could be the same as
before. Finally, if the local search finds a better sclution for
a particular objective then the non-dominance procedure is
called to see if the new solution sbould be added to the
attainment surface. Algorithm 2 shows the pseudocode of
the MCLS procedure.

The details for the single local search implementation
are given for the MKP in Gémez-Meneses and Randall [5]
and for the MQAP in Ramkumar, Pornnambalam and Jawa-
har [25].




Algorithm 2 Pseudocode of the MCLS procedure

fequire: m=number of objective functions
Require: n=mumber of elements of the solution vector
Require: S=solution vector
Generate a randoin variate veciot P(m)pana ~ U(1,0);
for a traverse of using index ¢ do
Select an objective using RWS and the P(m);qnq probability;
for a traverse of § using index j do
Swap the elements ¢ and j of 5
if the Spew feasible and better than the current solution then
P Set = non-dominance(Snem);
end for
end for

B. Multi-objective EQ framework

One of the main characteristics of EO is its ability fo
locate a possible optimal soluticn stochastically in search
space. This characteristic enables EQ to avoid being trapped
in a local minimum; however, this characteristic also hinders
EQ from being able to refine the search when a solution is
neat the optimal result. Therefore, MHEQ is made up of an
multi-objective EOQ framework and a MCLS framework that
is executed every time a feasible solution is found.

MHEQ starts by generating an initial random solution g
If the solution is feasible then this becomes the first point of
the attainment surface.

The solution in EQ can move beiwaen feasible and in-
feasible space {see Randall (7]} according to the problem
being solved. For instance, the MQAP only generates feasible
solutions. In this case, the infeasible component of the
framework is not considercd. Thus, it is necessary to carry
out an appropriate multi-objective EQ selection process for
both cases.

When the solution is feasible, the fitness calculation is
focused on locating which part of the solution adversely
affects its quality the most. However, when the solution is
infeasible, the fitness calculation is focused on locating which
part of the solution is more responsible for the violation
of one or more constraints. Thus, the extension from the
single EQ to the multi-objective EOQ is given by the simple
scalar addition of the fitness of each objective function in the
problem to solve.

n
@ =307, Vi 1<i<n
J=1

where: ) L
m  is the number of objectives,
n

is the number of selutions component,
ith

Ay is the multi-objective fitness of the 4** com-
pouent, and
A is the single-objective fitness of the i* com-

ponent.

After calculating the fitness of the solution, the compo-
nents are ranked from worst to best. Then one of them is
selected, based on the probability of its rank F; using RWS,
to change its value. As previously menticned, the new value
is chosen at randem, but within the legal scope of values,

Next, the new solution is accepted and evaluated to see
if it is feasible or not, In the case a feasible solution is
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obtained, the non-dominance procedure is called to see if
the new solution should be added to the attainment surface.

Finally, at preset intervals throughout the execution of the
multi-objective EOQ process, the local search is invoked by
the process described in the previous section to refine the
search. The reason for running the MCLS at regular intervals
is to complement both frameworks. On one hand, the multi-
objective EO component is concentrated in the ceniral past
of the Pareto-front. On the other hand, when the MCLS
component is activated, the solution is shifted towards the
ends of the Parcto-front,

Algorithm 3 shows the pseudocode of the HMEQ model
for MCOPs.

Algorithm 3 Pseudocode of the HMEOQ model for MCOP

Generate an inifial random solution 5";
if the current solufion is feasible then
Add S into PSet
Generate the probabilities array P according to Equation 1;
for g = 1 to Numlter do
if the current solution is feasible then
Evaluate fitness A according to feasible current solution;
else
Evaluate fitness X according to infeasible current sclution;;
Rank fimess A; for each S; from worst to best, 1 < i < n;
Select Sj_‘based on the probability of its rank F; using RWS;
Choose Snew in the neighbourhood of § where 8;'s value changes
fo a random one;
if Snew is feasible them
PSet = non-dominance(Snew);
if (int)(g/(Numlter /100}}%2) then
Local Search();
end for

VI. COMPUTATIONAL EXPERIMENTS

The proposed HMEQO method was coded in the C lan-
guage and compiled with gee version 4.4.1. The computing
platform used to perform the tests has a 1.86 GHz Intel Cote2
CPU and 917 MB of memory, running under Linux.

HMEQO is confipured to run 10 fest trials varying by
random seed. The number of iterations to complete a HMEO
process is 500000 for MKP and 100000 for MQAP. Tests
performed with a larger number of iteraiions, for each
problem, reported no significant improvements in resuits.
The difference in the number of iterations is due to the
local search technique used in each. The local search for
the MQAP is more exhaustive than that used in MKP. For
this reason MQAP requires fewer iterations, The 7 parameter
is set at 1.4 which has been reported in previous research [8],
71, [26] as being a good value o obtain efficient solutions.

A. Test Problems

In the first of the experiments HMEO is applied to solve
a group of six different MKPs from Zitzler and Thiele [27].
The problem’s name is presented through the nomenclature
KSnnn.an where nnn is the number of items and m is
the number of objectives. The test problems and test data
were obtained from Zitzler and Laumanns [28]. For the first
four problems K8.100.2, K8.250.2, K8.500.2 and K5.100.3
we compare the results with the trze Pareto-optimal set



(POS) which is available from this source. For the last two
problems KS8.750.2, K8.750.3 we compare the results with
those obtained by Strength Pareto Evolutionary Algorithm
2 (SPEA2) and Non-Dominated Sorting Genetic Algorithm
II (NSGA-IT). The reason for this particular selection of
problems and benchmark of comparison was subject to the
availability of experimental results from the source.

The profit and weight arrays are formed by uncorrelated
random integers in the interval [10,100]. The knapsack
capacity is set to half the total weight of all items with respect
to a particular knapsack. That is:

™
cy = 0.52 wi5
J=1

In the second, HMEOQ is applied to solve a group of eight
different MQAPs by Knowles and Corne 129]. These fest
problems have 10 facilities/locations with two objectives that
correspond to a 2 flow matrix. Three out of eight instances
were created using a uniformly random instance generator
and the other five instances were created using a real-like
instance generator, The problem’s name is presented through
the nomenclature KCnn-mfl-itype where nn is the number
of facilities/locations, m is the number of objectives or
flows and itype is the instance identification starting with
a correlative number plus the instance generaior used (unid
for uniformiy random and +{ for real-like). The test problems
and test data were obtained from Knowles [30], along with
the true Pareto-optimal sets for the eight test problems having
10 facilities/locations instances. Our results are compared
against those solution sets.

B. Results

The three basic concepts that we considered for multi-
objective optimisation are:

1} Minimise the convergence - that is the Pareto-front
distance produced by our proposal with respect to the
true Pareto-front (assuming that it is known).

2} Maximise the diversity - that is the distribution of so-
lutions, so that we can bave a Parcto-front distribution
as uniform as possible.

3} Maximise the coverage - that is to extend the Pareto-
front solutions toward the furthest areas of the land-
scape.

In the first of the experiments describes the results when

HMEO is applied to solve the MKP.

For the MKP test problems K8.100.2, K8.250.2, K8.500.2
(see Figure 1), and X5,100.3 (see Figure 2) whose true POS
results are known, it can be observed that the most successful
feature achieved by HMEO is the coverage followed by
the diversity and finally the counvergence. In the four test
problems, the figures show that HMEOQ solutions achieve
a quite similar coverage when compared to those produced
by the true POS results. In addition, the solutions present a
regular distribution of points along the Pareto-front for the
problems with two or three objectives although the number
of found solutions was less than those found in the true POS.
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However, HMEO showed a degradation in the convergence
as the number of variables increased from 100 to 500 items
which manifested in a certain sensitivity to the number of
items that can be processed.
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For the problems KS.750.2 (see Figure 3) and KS.750.3
(see Figure 4), which are compared against the well known
methods SPEA2 and NSGA-IL, it can be observed again that
the most successful feature achieved by HMEQ is coverage.
By inspection of the figures it may be seen that in both
test problems the area or surface covered by the Pareto
front obtained with the proposed algorithm is broader than
thase found by SPEA2 and NSGA-IL. Diversity worked quite
well for the test problem with two objectives but for the
test problem with three objectives shows some surface areas
without solutions. If we compare the distribution of points
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between test problems KS3.100.3 and KS.750.3 it can be
inferred that the greater the number of iterns, the greater
the difficulty to achieve a uniform distribution of points. It
is interesting to note that the convergence seems to be the
weak point of the implementation to solve the MKP through
HMEOQO framework. Despite reaching an attainment surface
very close to those achieved by SPEA2 and NSGA-II, only
a few points dominate those of SPEA2.

A better way to show the analysis for the test problems
KS.750.2 and KS.750.3 is by presenting some retrics that
help us to reinforce the information presented in Figures 3
and 4. Thus, the S-metric and C-metric proposed by Zit-
zler [31] are presented. The S-metric measures how much
of the objective space is dominated by a given non-dominated
Pareto-set A. This metric is useful to measure the coverage of
a sotution in an independent way. A high value of this metric
means a wide coverage of the Pareto-set under analysis. On
the other hand, using the C-metric (coverage) two Pareto-
sets can he compared to each other. The nomenclature used
is C(A, B) and the interpretation is as follows. The value
C{A, B) = 1 means that all solutions in B are dominated
by A. The value C{A,B) = 0 represents the situation
where none of the solutions in B are dominated by A.
Both orderings have to be considered since C{4,B) is
not necessarily equal to 1 — C(B,A4). A more detailed
explanation of these metrics can be found in Knowles and
Come [32].

TABLE 1
S-METRIC YALUES FOR THE K8.750.2 AND K8.750.3 TEST PROBLEMS.
THE VALUES ARE THE AVERAGES AND THE STANDARD DEVIATIONS FOR

THE 10 RUNS.
Problem niame KE.750.2 K5.750.3
X - X ¢
BMEO 386041 + 16T BITORY + 1Y | 253542+ 10"0 5 E1811+10F
SIEA2 348117+ 107 3.54000+ 107 | 101387+ 10'F  £.94082+ 107
NSGA-IL 3.34971 + 107 4,05495 + 105 | 1821421010 207875 » 109

TABLE II
C-METRIC YALUES FOR THE X.5.750.2 AND K8.750.3 TEST PROBLEMS.
THE VALUES ARE THE AVERAGES FOR THE ) RUNS.

Problem name KS8.750,2 K8,750.3
HMEQ  SPEA2  NSGA-I[ | HMECG  SPEA2Z  NSGA-I
HMEQ - 0.0828 0.02264 0.5977 0.87957
SPEA2 0.45518 0.17572 | 0.07739 07661
NEGA-11 0.40276 0,64536 0.00872 0.0169

From Table I we can see that HMEQ achieves a better
coverage of the dominated space on KS.750.2 and K8.750.3.
These results concur with Figures 3 and 4. By reference to
Table 11, we can observe that for the test problem KS.750.2
HMEO dominates only a reduced number of solutions of
SPEA2 and NSGA-II. However, 40% to 45% of solutions
from HMEOQ are not dominated by either of the two other
methods (SPEAZ, NSGA-II). In the case of K8.750.3, the
table shows that HMEO dominates around 60% of the solu-
tions of SPEA2 and 88% of NSGA-II, and less than 1% of
HMEO solution are dominated by either SPEA2 or NSGA-
I1. The latter represents a significantly better performance of



HMEOQO above SPEA2 or NSGA-II.

Finally, the inferior results obtained in convergence sug-
gests that either the criterion to calculate the fitness for the
multi-objective EO framework or the local search technique
used for the MCLS were not the most appropriate for the
MKP.
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Fig. 5. HMEO results for the two objective MQAP test problem with:
uniformly random distribution. The Graph shows a single typical run.

WGP a
KCHIIAHIED"  +

LY I

p. L L N L L L
1504006 794005 2504005 J9I05 25406 444005 ASHIKE SIW0E SH80006 G4 OIS

wCwmiiry’ o
REIDMEAHNED"

Bartd

Azs008

. ?

- T - d
204000 dovdit 4p0E  SE4006 GRAOIE Twsl0B 20ME  Pudl0B  FR00T %1e007

Fig. 6. HMEO resulis for the two objective MQAP test problems with
real-like distribution. Bach graph shows a single typical run.
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The second of the experiments desctibes the results when
HMEQ is applied to solve the MQAP.

In five out of ecight test problems, HMEQO success-
fully achieved the true POS. These test problems are
KC102E81uni, KC.10.2f2uni, KC.10.2£2r], KC.10.2£31,
and KC.10.2f4rl. For the remaining three problems
KC.10.2£3uni (see Figure 5) , KC.10.2f 1], and KC.10.2f.511
(see Figure 5), HMEQ reached solutions very close to the
true POS. For this reason C-mefric and S-metric were used
again to quantify the performance on these three problems.

From the S-metric measure shown in Table I and Fig-
vres 5, and 6 we can see that the difference in the size
of the dominated space between HMEQ and the true POS
is minimal in favour of the true POS. In this case, the
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convergence, diversity, and coverage features work qguite
well, A similar situation can be observed when the C-metric
data in Table IV are analysed. For the two like-real test
problems the percentage of solutions dominated by the true
POS is less than 7%. The only test problem with relatively
poor quality results is KC.10.2fl-3uni where the percentage
of solution dominated by the true POS is around 25%.

TABLE 1I}
B-METRIC VALUES FOR THE KC.10.2FL-3UNL, KC.10.2FL-1RL, AND
XC.10.2FL-5RL TEST PROBLEMS, THE VALUES ARE THE AVERAGES AND
THE STANDARD DEVIATIONS FOR THE 10 RUNS.

Prablem wame EC.10.20-3ani
X o
HAMEC R G ST P S T
TrucPOS 5582 s 16Y ]
Problem mame KCI0.Z8-1 RC.10.20-51
X @ X T
HMEQ 1162107 1893+ 107 | LEE« 107 3729+ 10™
TrucPOS 1162+ 10™ ] 1.807 + 1014 4
TABLE 1V

C-METRIC VALUES FOR THE X.C.10,2FL-3uN|, KC,10.2FL-1RL, AND
KC.10.2FL-5RL TEST PROBLEMS. THE VALUES ARE THE AVERAGES FOR

THE 10 RUNS,
Problem nume KC.10.20-30m1 KC.A0.21-1d RC.102Z0-31
HMED TruePQS HMED TrePCS | UMEQ  TmePOS
HMEQ - [] - 0 -
TruePOS 0.245324 - 0.014232 - 0.06605

VH. CONCLUSIONS

This paper described a Hybrid Multi-objective Extremal
Optimisation approach to solve multi-objective combinatorial
optimisation problems, The strength of HMEQ lies in its
combination of a multi-objective extension of EQ and a
multi-objective combinatorial local search mechanism, The
multi-objective EO is used as the main framework to carry
out a coarse-grain search on the state space, taking advantage
of particular characteristics such as its small requirements for
parametrisation and implementation, and its stochastic nature
of exploration. The MCLS is used as a secondary framework
to carry out a fine-grain search on the state space by refining
each new feasible solution found in the main framework and
improving the convergence toward the true POS. Also it is
able 1o expand the surface dominated by the Pareto-front
towards their ends, discovering new non-deminated points.

The computational study in this paper has proved that
the alliance of a simple extension of EO and a local search
technique to handle multi-objective combinatotial problems
is competitive and sfficient. Thus, HMEQ demonsirated a
similar coverage when it was compared with the true POS
and a better coverage with respect to SPEAZ and NSGA-
II. The achieved diversification was acceptable for most
problems. The best results were obtained with MQAP, having
an almost perfect output. The MKP experiments performance
better for larger problems. HMEQ was competitive with the
well known multi-objective methods SPEA2 and NSGA-IL




The results reported in this paper are preliminary, but
promising. Future work will inchude a series of transforma-
tions of the MEQ framework to improve the performance
of the HMEQ approach. First, the fitness calculation will
be changed to an evaluation based on the Parcto-dominance
concept, which is popularly msed by many existing multi-
objective evolutionary algorithms. Second, a population-
based extension of HMEO will be developed. These two
steps will be implemented with the objective of improving
the diversity and convergence of the current approach, A new
series of experiments will be executed to solve more complex
test problems than MKP and MQAP, as well as to solve new
benchmark problems such as the Multi-objective Flow-shop
Scheduling Problem, the Multi-objective Travelling Sales-
man Problem and the Multi-objective Solid Transportation
Prablems.
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