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WCC12010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

A Hybrid Multi-objective Extremal Optimisation Approach for
Multi-objective Combinatorial Optimisation Problems

Pedro G6mez-Meneses, Marcus Randall and Andrew Lewis

Abstract Extremal optimisation (EO) is a relatively recent
nature-insplred heuristic whose search method is especially
suitable to solve combinatorial optimisation problems. To date,
most of the research in EO has been applied for solving
single-objective problems and only a relatively small number
of attempts to extend EO toward multi-objective problems.
This paper presents a hybrid multi-objective version of EO
(HMEO) to solve multi-objective combinatorial problems. This
new approach consists of a multi-objective EO framework, for
the coarse-grain search, which contains a novel multi-objective
combinatorial local search framework for the fine-grain search.
Tl~e chosen problems to test the proposed method are the multi-
objective knapsack problem and the multi-objective quadratic
assignment problem. The results show that the new algorithm is
able to obtain competitive results to SPEA2 and NSGA-II. The
non-dominated points found are well-distributed and similar or
very close to the Pareto-front found by previous works.

I.    INTRODUCTION

Nature-inspired methods like extremal opfimisation CEO)
have emerged in response to solve those optimisation prob-
lems with which conventional mathematical techniques have
difficulties. This may be as a result of the complex shape of
their landscapes or the limitation of current computational
systems. Most combinatorial optimisation problems (COPs)
have been classified as N’P-hard and new heuristics like EO
are giving a new perspective on solving them instead of using
traditional evolutionary algorithms (EAs). EO has the feature
of requiring only one algorithm-speclfic parameter and it uses
a minimal amount of memory, which can often lead to a
lower computation time. At each iteration EO applies the
principle of eliminating one of the weaker or less adapted
solution components and replacing it by a random value.

Initially EO was applied to problems such as graph bi-
paffltioning, 3-colouring graph, spin-glass, and max-cut [1],
[2]. Additionally, some exploratory work on other COPs
such as the travelling salesman [3], [4], multidimensional
knapsack [41, [51, maximum satisfiabifity [61, generalised
assi~maent [7], bin packing [8], [9], [10], and dynamic
problems [11] has been undertaken. Hybrid algoriffims have
also been developed in which aspects of EO are combined
with other methods such as particle swarm optimisation [12],
and genetic algorithms [13]. EO is now being extended to
solve multi-objective problems [14], [15].

A hybrid multi-objective extremal optimisation (HMEO)
proposal is presented herein which finds solutions through
the collaborative use of EO with a local search framework,
both suitable (in principle) to solve a wide range of multi-
objective combinatorial optimisation problems (MCOPs).
The EO part of this approach carries out a coarse-ga’ain
search on the landscape that allows it to find new non-
dominated points as the solution moves closer to the Pareto-
front. The EO movement permits the exploration of the
search space without becoming stuck in a particular region of
the landscape. The local search part helps to develop a fine-
grain movement to obtain a better approximation toward the
Pareto-front as well as to produce a greater diversification
of the points towards the ends of the Pareto-ftont. The
advantage of this proposal is its simplicity of implementation
due to its single parameter and selection procedure.

Given this new approach, we test the behaviour of HMEO
on two MCOPs. They are the multi-objective knapsack
problem (MKP) and the multi-objective quadratic assignment
problem (MQAP). The results show that the new hybrid
multi-objective algorithm works well with respect to con-
vergence and distribution of solutions. Thus, HMEO can be
a potential choice to efficiently solve MCOPs.

The paper is organised as follows. Section 2 gives a
summary of EO. Section 3 introduces the basic concepts
of multi-objective problems and Pareto optimality. Section
4 presents two benchmark problems to validate the proposal.
Section 5 explains the HMEO framework to solve MCOPs.
Section 6 shows the results obtained and presents an analysis
of them. Finally, in Section 7 we conclude and discuss the
future work arising from this study.

II. EXTREMAL OPTIMISATION

EO is an evolutionary meta-heuristic proposed by Bak
and Sneppen [16] based on a model of co-evolution be-
tween species. This model describes species’ evolution via
exfmction events as a self-organised critical (SOC) [17]
process. SOC tries to explain the manifestation of complex
phenomena in nature such as the formation of sand piles and
the occurrences of earthquakes [18]. The main characteristic
is that a power law describes the events in the system.
Simply put, these systems have some critical points that are
configured in a particular way. When an event converges
towards one of these points, a critical state is reached which
triggers a series of changes over the elements near to the
critical point. Using salf-organisation the system is able to
reach a new state of equilibrium. Finally, it evolves in a
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transient period of stability until the next critical point is
reached.

A good way to understand EO’s characteristics is to
compare it with another wall-known method such as genetic
algorithms (GAs) [19]. First, a GA conmaouly has a set
of parameters that need to be tuned for proper operation;
however, in EO only one specific parameter must be tuned.
Second, in EO the fitness value is not calculated for each
structure that represents a solution as in a GA but for each
component of the structure. Each component is evaluated
accorffmg to its contribution in obtaining the best solution.
Third, canonical EO works with a single solution instead of
a population of solutions as in GA. Last, EO modifies the
worst part of the solution while in contrast GA promotes a
group of elite solutions.

There is only one EO specific parameter that is olden
referred to as T [20]. This parameter is used probabilistically
to choose the component value to be changed at each iteration
of,the algorithm. The algorithm ranks the components and
assigns to them a number from 1 to n using the fitness of
each one (where n is the number of components). There-
fore, the fitness must be sorted from the worst to the best
evaluated. Then a selection method such as roulette wheel
(RWS) is used to choose the component whose value will
be changed to a random value according to the probability
calculated for eaala component as shown in Equation 1. If
the new component makes the solution the best found so
far, according to the evaluation function, then this solution
is saved as Xb~.~,. The EO process is shown in Algorithm 1.

where:
n is the total number of components evaluated and ranked, and
Pi is the probability that the ith component is chosen.

Algorithm 1 Standard EO for minimisation problem
Generate an initial random solution X-(Zl, ~2, - ¯ - ~
Set Xbe~ = X;
Generate the probabilities an’ay P aceordlng to Equation 1;
for a preset number of iterations do

Evaluate and rank fitness Ai for each x¢ fi’om worst to best, 1 ~< i <
Select component j based on the probability of its rank Pi using RWS;
xj Generate a random appropriate value that is not equal to
Eva(X) -- Evaluate the new solution;
if Ev~(X) < Eva(Xb~) then Xh~.l~ = X;

III,    MULTI-OBJECTIVE OPTIMISATION PROBLEMS

Many real-world optimisation problems have several op-
tima (maximum or minimum). These optima are equally
important, either by having the same numerical value, or
because they are not able to establish a criterion to decide
which of them is better. Normally, for multi-objective opti-
misation problems (MOPs), the decision concerning the most
appropriate solution is a contextual one and is often left to
a human decision-maker.

Multi-objective optimisation can be defined as the chal-
lenge of discovering a collection of solutions that satisfies
all constraints at the same time and maximises or minimises
each one of the objective functions. Generally these objective
functions are in conflict with each other in terms of their
evaluation. Therefore, a multi-objective optimisation problem
must find a set of solutions that optlmise all the objective
functions for a particular problem.

The multi-objective optimisation approach resembles
single-objective optimisation. The problem is to find a so-
lution vector .~" such that:

wheel
is a vector of d ecision variables ( a: 1,..., xn ) feat represents

is a vector of objective functions (f~(z~), ..., fk(:g)) to be
maximised or mlnimised,
is tbe feasible searcb space limited by tbe constraints,

The more accepted concept of optimality in a multi-
objective field is the so-called Pareto optimality. This notion
is based on the concept of dominance which is defined
below [2112

Definition 1 (Pareto Dominance): For a minimisation
problem, a solution ~’ dominates another sohition ~, if and
only if, ~’ is partially less than ~ and there exists at least
an ob~ecfive where g is absolutely less than ~, denoted by

Once the concept of Pareto dominance has been defined
an explanation about when a solution is a Pareto-optimal is
given next.

Definition 2 (Pareto-optimal): A solution fi is Pareto-
optimal, if and only if, there is no other sointion g which
dominates it. That is, ~g~ F : g~ ~.

After some optimisation process several Pareto-optimal
solutions may be found. The set of results that gathers all of
the Pareto optimal solutions is known as the Pareto optimal
set (P*).

Definition 3 (Pareto optimal set): The Pareto optimal set
(P*) is the set of all Pareto optimal solutions s~ such that
there is not a solution gthat f(~ -~ f(s~).

The person that chooses the final solutions from the Pareto
optimal set for a particular problem is the decision-maker.
The vector that satisfies these definitions is known as the
Pareto-front. Thus, for a given multi-objective problem f(~)
and a set of Pareto-opthnal solutions P*, the Pareto-front is
defined below.
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Definition 4 (Pareto-fronO: Pareto-front PF* is the set
P* of all solutions that are Pareto-optimal for a given
problem f(~).

BENCHMARK PROBLEMS

with

where:
This section presents a concise description of two repre- n

sentative MCOPs classified as A/’7~-hard which are used to ~
validate the proposed method. These are the multi-objective a

knapsack problem and the multi-objective quadratic assign-
ment problem, a,~j

A. Multi-objective Knapsack Problem

The knapsack problems (KP) has widely been used as a
benchmark problem to compare new general purpose meta-
heuristics. Also, we can find several real-world problems
that can be modelled by a KP, specially those that must
assign a series of items lir, ked with a profit and cost to
a resource (knapsack) with lhnited capacity [22]. The idea
is’to maximise the profit without overloading the resource
capacity.

The multi-objecfive version of the classical 0/1 KP can be
obtained by adding more knapsacks to the problem. Formally,
it can be represented as:

with

is tbe profit of item i in knapsack j,
is the weight of item i in knapsack j,
is the capacity of tbe knapsack j,

is the i~h decision variable in the solution vector,
I if the item is ha the solution, 0 otherwise.

B. Multi-objective Quadratic Assignment Problem

The quadratic assignment problem occurs in applications
such as layout of malls, hospitals and airport terminals,
location of electronic components in an integrated circuit,
distribution of resources in a collection centre and any other
case where it is necessary to assign a set of facilities to
specific locations. The objective is to minimise the cost
associated with the flows of items amongst facilities and the
distance between these.

When we have two or more different kinds of flows or
facilities that must be assigned to a location then we are
working with a MQAP. For instance, in a hospital we want to
simultaneously minimise the flow of doctors, patients, nurses,
visitors, equipment, and so on.

Formally, the MQAP can be represented as:

is tbe number of objectives or flows,
is the number of facilities/location,s,
is the location of facility i in permutation if,
is the set of all permutations,
is file kth flow from facility i to facility j, and
is the distance between location of facility
and location of facility j.

V. HYBRID MULTI-OBJECTIVE EO

Previous research applying EO to COPs has shown the
advantages of complementing EO with a local search mech-
anism [5], [8], [9], [10]. This section shows how HMEO is
implemented to deal with MCOPs. First, the multi-objective
combinatorial local search framework (MCLS) will be de-
scribed and then the multi-objective EO framework.

A. Multi-objective Combinatorial Local Search Framework

Most multi-objective local search methods in the literature
use genetic algorithms. For these, the two approaches more
often developed are based on Paretu ranking and weighted
scalar fitness functions [23]. Comparative studies showing
the advantages and disadvantages of both teehnignes can be
found in ishibuchi and Narukawa [23] and Jaszkiewicz [24].

Because our area of interest is focused on combinatorial
problems, our goal in this paper is to discover novel ideas
that can be applied in a general way to MCOPs. Observing
the previous analysis of the two local search techniques
used in evolutionary multi-objective opfunisation (EMO) we
contribute a new, simpler approach in a effort to offer a new
alternative to be used for MCLS.

The MCLS framework proposed is simple. Modifying and
mixing the concepts of the weighted scalar fitness and the
lexicographic ordering we decide to change the weighted
vector by a probability vector which is filled with random
values P(m)~.,~,.t ~ U(1,0). This vector is used to choose
an objective based on its assigned probability !?i using RWS.
As most combinatorial problems explore the neighbourhood
of the landscape using a swap operator through a double
traverse of the solution vector, a single local search on the
objective chosen will be done by each single traverse of the
solution vector. Before each single traverse is started, a new
objective function is selected which could be the same as
before. Finally, if the local search finds a better solution for
a particular objective then the non-domfuance procedure is
called to see if the new solution should be added to the
attainment surface. Algorithm 2 shows the pseudocode of
the MCLS procedure.

The details for the single local search implementation
are given for the MKP in G6mez-Meneses and Randall [5]
and for the MQAP in Ramkumar, Pormambalam and Jawa-
har [25].
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Algorithm 2 Pseudocode of the MCLS procedure
Require: ~r~ nuraber of objective functions
Require: n=number of elements of the solution vector
Reqnlre: if-solution vector

Generate a random variate vector P(m)r,~*d ~ U(1, 0);
for a traverse of,~ using index g do

Select an objective using RWS and the P(ra),..~.a probability;
for a traverse of ~ using index j do

Swap the dements ~ and j of,~;
if the ~new feasible and better than the cun’ent solution then

end tbr
end for

B. Multi-objective EO framework

One of the main characteristics of EO is its ability to
locate a possible optimal solution stochastically in search
space. This characteristic enables EO to avoid being trapped
in a local minimum; however, this characteristic also hinders
E@ from being able to refine the search when a solution is
near the optimal result. Therefore, MHEO is made up of an
multi-objective EO framework and a MCLS framework that
is executed every time a feasible solution is found.

MHEO starts by generating an initial random solution ft.
If the solution is feasible then this becomes the first point of
the attainment surface.

The solution in EO can move between feasible and in-
feasible space (see Randall [7]) according to the problem
being solved. For instance, the MQAP only generates feasible
solutions. In this case, the infeasible component of the
framework is not considered. Thus, it is necessary to carry
out an appropriate multi~objecfive EO selection process for
both cases.

When the solution is feasible, the fitness calculation is
focused on locating which part of the solution adversely
affects its quality the most. However, when the solution is
infeasible, the fitness calculation is focused on locating which
part of the solution is more responsible for the violation
of one or more constraints. Thus, the extension from the
single EO to the multi-objective EO is given by the simple
scalar addition of the fitness of each objective function in the
problem to solve.

where:
m is the number of objectives,
n is the number of solutions component,
Ai is tbe multi-objectlve fitness of tim i*h com-

ponent, and
is the single-objective fitness of tile i~h com-
ponent.

After calculating the fitness of the solution, the compo-
nents are ranked from worst to best. Then one of them is
selected, based on the probability of its ramk/?~ using RWS,
to change its value. As previously mentioned, the new value
is chosen at random, but within the legal scope of values.

Next, the new solution is accepted and evaluated to see
if it is feasible or not. In ffie case a feasible solution is

obtsined, the non-dominance procedure is called to see if
the new solution should be added to the attainment surface.

Finally, at preset intervals tba’oughout the execution of the
multi-objective EO process, the local search is invoked by
the process described in the previous section to refine the
search. The reason for running the MCLS at regular intervals
is to complement both frameworks. On one hand, the multi-
objective EO component is concentrated in the central part
of the Paretn-fronL On the other hand, when the MCLS
component is activated, the solution is shifted towards the
ends of the Pamto~front.

Algorithm 3 shows the pseudocode of the HMEO mode!
for MCOPs.

Algorithm 3 Pseudocode of the ITMEO model for MCOP

Generate an initial random solution ~;
if the current solution is feasible then

Add ~ into PSet ;
Generate the probabilities army P according to Equation 1;

Select Sj~based on the probability of its rank Pi using RWS;
Choose Sr*ew in the neighbourhood of ~ whole Sj~s value changes

PSe~ non-dominance(ffne~ );
if (int)(g/(Numlter/lO0))~o2) then

Local SeamhO;

VI. COMPUTATIONAL EXPERIMENTS

The proposed HMEO method was coded in the C lan-
gnaage and compiled with gcc version 4.4.1. The computing
platform used to perform the tests has a 1.86 GHz Intel Core2
CPU and 917 MB of memory, running under Umux.

HMEO is configured to run 10 test trials varying by
random seed. The number ofitera’dons to complete a HMEO
process is 500000 for MKP and 100000 for MQAP. Tests
performed with a larger number of iterations, for each
problem, reported no significant improvements in results.
The difference in the number of iterations is due to the
local search technique used in each. The local search for
the MQAP is more exhaustive than that used in MICP. For
this reason MQAP requires fewer iterations. The "c parameter
is set at 1.4 which has been reported in previous research [8],
[7], [26] as being a good value to obtain efficient solutions.

A. Test Problems

In the first of the experiments HMEO is applied to solve
a group of six different MKPs from Zitzler and Thiele [27].
The problem’s name is presented tin’ough the nomenclature
KS.nnn.m where nnn is the number of items and m is
the number of objectives. The test problems and test data
were obtained from Zitzler and Laumarms [28]. For the first
four problems KS.100.2, KS.250.2, KS.500.2 and KS.100.3
we compare the results with the true Paretn-optimal set
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(POS) which is available from this source. For the last two
problems KS.750.2, KS.750.3 we compare the results with
those obtained by Strength Pareto Evolutionary Algorithm
2 (SPEA2) and Non-Dominated Sorting Genetic Algorithm
II (NSGA-11). The reason for this particular selection of
problems and benchmark of comparison was subject to the
availability of experimental results from the source.

The profit and weight arrays are formed by uncorrelated
random integers in the interval [10,100]. The knapsack
capacity is set to half the total weight ofali items with respect
to a pa~’lcular knapsack. That is:

In the second, HMEO is applied to solve a group of eight
different MQAPs by Knowles and Come [29]. These test
problems have 10 facilities/locations with two objectives that
correspond to a 2 flow matrix. Three out of eight instances
were created using a uniformly random instance generator
m~d the other five instances were created using a real-like
instance generator. The problem’s name is presented through
the nomenclature KCnn-~r~fl-i~yl)e where nn is the number
of facilifies/locations, m is the number of objecfives or
flows and itype is the instance identification starting with
a correlative number plus the instance generator used (uni
for uniformly random and rl for real-like). The test problems
and test data were obtained fxom Knowles [30], along with
the tree Pareto-opfimal sets for the eight test problems having
10 facilifies/incations instances. Our results are compared
against those solution sets.

B. Results

The three basic concepts that we considered for multi-
objective opfimisation are:

1) Minimise the convergence - that is the Paretu-front
distance produced by our proposal with respect to the
tree Pareto-front (assuming that it is known).

2) Maximise the diversity - that is the distribution of so-
lufions, so that we can have a Pareto-front distribution
as uniform as possible.

3) Maximise the coverage - that is to extend the Pareto-
front solutions toward the furthest areas of the land-
scape.

In the first of the experiments describes the results when
HMEO is applied to solve the MKE

For the MKP test problems KS.100.2, KS.250.2, KS.500.2
(see Figure 1), and KS.100.3 (see Figure 2) whose true POS
results are known, it can be observed that the most successful
feature achieved by HMEO is the coverage followed by
the diversity and finally the convergence. In the four test
problems, the figures show that HMEO solutions achieve
a quite similar coverage when compared to those produced
by the trae POS results. In addition, the solutions present a
regular distribution of points along the Pareto-front for the
problems with two or three objectives although the number
of found solutions was less than those found in the true POS.

However, I-IMEO showed a degradation in the convergence
as the number of variables increased fl’om 100 to 500 items
which manifested in a certain sensitivity to the number of
items that can be processed.

Fig. 1. HMEO results for the two objectives MKP test problems with 100,
250, and 500 items versus the true POS. Each grapb shows a single typical

Fig. 2. HMEO results for the three objective MKP test problems wgb 100
items versus the true POS. Each gr~pb shows a single typical run.
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Fig. 3. HMEO results for the two objective MKP test problems with 750
items (KS.750.2) versus SPEA2 and NSGA-B. This graph shows a single
typical t-an.

Fig. 4. HMEO resutts for tile three objective MKP test problems with 750
items (KS.750.3) versus SPEA2 and NSGA-II. Each graph shows a single
typical run.

For the problems KS.750.2 (see Figure 3) and KS.750.3
(see Figare 4), which are compared against the well known
methods SPEA2 and NSGA-II, it can be observed again that
the most successful feature achieved by HMEO is coverage.
By inspection of the figures it may be seen that in both
test problems the area or surface covered by the Pareto
front obtained with the proposed algorithm is broader than
those found by SPEA2 and NSGA-I[. Diversity worked quite
well for the test problem with two objectives but for the
test problem with three objectives shows some surface areas
without solutions. If we compare the distribution of points

between test problems KS.100.3 and KS.750.3 it can be
inferred that the greater the number of items, the greater
the difficulty to achieve a uniform distribution of points. It
is interesting to note that the convergence seems to be the
weak point of the implementation to solve the MKP through
HMEO framework. Despite reaching m~ attainment surface
very close to those achieved by SPEA2 m~d NSGA-I1, only
a few points dominate those of SPEA2.

A better way to show the analysis for the test problems
KS.750.2 and KS.750.3 is by presenting some metrics that
help us to reinforce the information presented in Figures 3
and 4. Thus, the S-metric and G-metric proposed by Zit-
zler [31] are presented. The 5’-metric measures how much
of the objective space is dominated by a given non-donfinated
Pareto-set A. This metric is useful to measure the coverage of
a solution in an independent way. A high value of this metric
means a wide coverage of the Pareto-set under analysis. On
the other hand, using the C-metric (coverage) two Pareto-
sets can be compared to each other. The nomenclature used
is C(A,B) and the interpretation is as follows. The value
G(A, B) -- 1 means that all solutions in B are dominated
by A. The value G(A,B) -- 0 represents the sitaatian
where none of the solurions in B are dominated by A.
Both orderings have to be considered since C(A,B) is
not necessarily equal to 1 C(B,A). A more detailed
explanation of these metrics can be found in Knowles and
Come [32].

TABLE I
S-METRIC VALUES FOR THE KS.750.2 AND KS.750.3 TEST PROBLEMS.
TF[E VALUES ARE THE AVERAGES AND THE STANDARD DEVIATIONS FOR

THEI0RUNS.

TABLE H
C-METRIC VALUES FOR THE KS.750.2 AND KS.750.3 TEST PROBLEMS.

KS.750.2

t
KS’750’3HMEO SPEA2 NSGA-[[ HMEO SPEA2 NSGA-II

. 0.0828 0.02264 0.5977 0.~7957
0.455[8 . 0.17572 0.07739 . 0,7961
0.40276 0.64536 0.00872 0.0169

From Table I we can see that HMEOachieves a better
coverage of the dominated space on KS.750.2 and KS.750.3.
These results concur with Figures 3 and 4. By reference to
Table 1~, we can observe that for the test problem KS.750.2
HMEO dominates only a reduced number of solutions of
SPEA2 and NSGA-IL However, 40% to 45% of solutions
from HMEO are not dominated by either of the two other
methods (SPEA2, NSGA-II). In the case of KS.750.3, the
table shows that HMEO dominates around 60% of the solu-
tions of SPEA2 and 88% of NSGA-II, and less than 1% of
HMEO solution are dominated by either SPEA2 or NSGA-
lI. The latter represents a significantly belier performmace of
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HMEO above SPEA2 or NSGA-U.
Finally, the inferior results obtained in convergence sug-

gests that either the criterion to calculate the fitness for the
multi-objective EO framework or the local search technique
used for the MCLS were not the most appropriate for the
MKP.

Fig, 5. HMEO ~sults for the two objective MQAP test problem with
uniformly random distribution. The Graph shows a single typical run.

convergence, diversity, and coverage features work quite
well. A similar situation can be observed when the C-metric
data in Table IV are analysed. For the two like-real test
problems the percentage of solutions dominated by the true
POS is less than 7%. The only test problem with relatively
poor quality results is KC.10.2fl-3uni where the percentage
of solution dominated by the true POS is around 25%.

TABLE ii1

S-METRIC VALUES FOR THE KC, 10.2FL-3UNI, KC, I 0.2FL-] RL, AND

KC, 10,2FL-5RL TEST PROBLEMS. THE VALUES ARE THE AVERAO ES AND

THE STANDARD DEVIATIONS FOR THE 10 RUNS.

Fig. 6. HMEO results for the two objeetlve MQAP test problems with
real-like distribution. Eaeb graph shows a single Wpical t~an,

The second of the experiments describes the results when
HMEO is applied to solve the MQAP.

In five out of eight test problems, HMEO success-
~ally achieved the true POS. These test problems are
KC.10.2£1uni, KC.10.2f.2uni, KC.10.2f.2rl, KC.10.2£3rl,
and KC.10.2f.4rl. For the remaining three problems
KC.I 0.2t~3uni (see Figure 5), KC. 10.2f.lrl, and KC.10.2fi5rl
(see Figure 5), HMEO reached solutions very close to the
true POS. For this reason C-metrlc and S-metric were used
again to quantify the performance on these three problems.

From the S-metric measure shown in Table gl and Fig-
ures 5, and 6 we can see that the difference in the size
of the dominated space between HMEO and the trae POS
is minimal in favour of the true POS. In this case, the

TABLE IV

C-METRIC VALUES FOR THE KC. [0.2FL-3 UNt, KC.10.2FL- IRL, AND

KC.10.2FL-5RL TEST PROBLEMS. THE VALUES ARE T~IE AVERAGES FOR

TIlE 10 RUNS.

VII. CONCLUSIONS

This paper described a Hybrid Multi-objective Extremal
Optimisation approach to solve multi-objective combinatorial
optinaisation problems. The s’a’ength of HMEO lies in its
combination of a multi-objective extension of EO and a
multi-objective combinatorial local search mechanism. The
multi-objective EO is used as the main fi’amework to carry
out a coarse-grain search on the state space, taking advantage
of particular characteristics such as its small requirements for
parametrisation and implementation, and its stochastic natare
of exploration, The MCLS is used as a secondary framework
to carry out a fine-gain search on the state space by refining
each new feasible solution found in the main framework and
improving the convergence toward the true POS. Also it is
able to expand the surface dominated by the Pareto-front
towards their ends, discovering new non-dominated points.

The computational study in this paper has proved that
the alliance of a simple extension of EO and a local search
technique to handle multi-objective combinatorial problems
is competitive and elIicient. Thus, HMEO demonstrated a
similar coverage when it was compared with the true POS
and a better coverage with respect to SPEA2 and NSGA-
1I. The achieved diversification was acceptable for most
problems. The best results were obtained with MQAP, having
an almost perfect output. The MKP experiments performance
better for larger problems. HMEO was competitive with the
well known multi-objective methods SPEA2 and NSGA-II.
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The results reported in this paper are preliminary, but
promising. Futm’e work will include a series of transforma-
tions of the MEG framework to improve the performance
of the HMEO approach. First, the fitness calculation will
be changed to an evaluation based on the Pareto-dominance
concept, which is popularly used by many existing multi-
objective evolutionary algorithms. Second, a population-
based extension of HMEO will be developed. These two
steps will be implemented with the objective of improving
the diversity and convergence of the current approach. A new
series of experiments will be executed to solve more complex
test problems than MKP and MQAP, as well as to solve new
benchmark problems such as the Multi-objective Flow-shop
Scheduling Problem, the Multi-objective Travelling Sales-
man Problem and the Multi-objective Solid Transportation
Problems.

REFERENCES

[1] S, Boettcher, "Ex~remal optimization for Sherrington-Kirkpatrick spin
’ glasses," The European Physical Journal B, vol. 46, pp. 501305,

2005.
[21 S. Boelteher and A. Percus, "Extremal optimization: An evolutinnary

local-search algerititm," in 8th INFORMS Computer Society Confer
enee, 2003.

[3] S. Boettcher and A. G. Percus, "Evolutionary strategies extremal
optimization: Methods derived from co evolution," in GECCO-99:
Ptvceedings of the Genetic and Evolutionary Computation ConJbrenee,
1999, pp. 825-832.

[4] M. Randall and A. Lewis, "An extended extremal optimisation model
for paratial architectures," in 2nd International Co~!ference on e-
Science and Grid Computing, 2006.

[5] P. G6mez-Meneses and M. Randall, "Extremal optimlsafion with a
penalty approach for the multidimensional knapsack problem;’ in
SEAL, ser. Lecture Notes in Computer Salenee, vol. 5361. Springer,
2008, pp. 229-238.

[6] M. E. Menai" and M. BaHuehe, "An effective henrlstic algorithm for file
maximum satisflability problem." Applied lnteBigence, vol. 24, no. 3,
pp. 227-239, 2006.

[7] M. Randall, "Enha~tcements to extremal optlmisation for generalised
assignment," in ACAL, set. LecHre Notes in Artificial Intelllge~ee, yah
4828. Springer, November 2007, pp. 369-380.

[8] T. Hendtlass and M. Randall, "Extremal optimisation and bin
packing." in SEAL, ser. Lecture Notes in Computer Science,
vol. 536!, Springer, 2008, pp. 22~228. [Online], Available:
http:Bdblp.uni-trier.de/db/conflseal/seal2OOd.html

[9] M. Randall, T. Hendtlass, and A. Lewis, "Extremal
optimisation for assignment type problems;’ in Biologically
Inspired OptimisaBon Methods: Paralle! Algorithms, Systems
and Applications, ser. S~dies in Computational Intelligence.
Springer Verlag, 2009, vol. 210, pp. 139 164. [Otfline]. Available:
htt p://www.springet: COln/engineering/book/978 3-642-01261-7

[10] P. G6mez-Meneses and M. Randall, "A hybrid extremal optimlsatlon
approach [’or the bin packing problem," in ACAL, ser. Lecture Notes
in Computer Science, K. B. Korb, M. Randall, and T. Hendtlass, Eds..
vo!. 5865. Springer, 2009, pp. 242 251.

[I 1] T. Hendtlass, i. Maser, and M. Randall, "Dynamic problems and nata~re
inspired recta-heuristics," in 2ha IEEE international ConJbt~nce on e-
Science and Grid Compuling, 2006.

[12] M. R. Chen, g. Z. Lu, and Q. LUG, "A novel hybrid algorithm with
marriage of particle swarm optimization and extremal optimization,"
Optimization OnEne, 2007.

[131 Y. W. Chen, Y. Z. Lu, and G. K, Yang, "Hybrid evolutionary algorithm
witia marriage of genetic algerititm and extremal optimization for pro-
dneimn scheduling;’ lnternational dournal of Advanced Manufacturing
Technology, 2007.

[14] M.-R. Chen, Y.-Z. Lu, and G. Yang, "Maltiobjeetive optimization
using populatinndsased extremal optilrtization," Neural Computing &
Applications, April 2007.

[15] M,-R. Chen and Y.~. Lu, "A novel elitist multiohjeetive optimization
algerititrn: Multiobjeetive extremal optimizatiot~," Eutvpean Journal
oJ’Operational Research, vol. 127, no. 3, pp, 63~651, August 2008.

[16] P. Bak and K. Sneppen, "Punctuated equilibrium and criticality in a
simple model of evolution," Physical Review Letters, vat. 71, no. 24,
pp, 4083M086, 1993.

[17] P. Bak, C, Tang, and K, Winsenfald, "Salf-organlzed critlcali~: An
explanation of the 1/f noise," Physical Review Letters, vol. 59, no. 4,
pp. 381 384, 1987.

[18] P. Bak, How nagn~ works. Springer-Verlag New York Inc., 1996.
[19] D. E. Goldberg, Genetic Algorithms in Search, OptOnizaEon and

Machine Learning. Boston, MA, USA: Addlson-Wesley Longman
Publishing Co., Inc.. 1989.

[20] S, Boettcher, "Extremal op(unlzation: Heuristics via co-evolutionary
avalaa~ches," Computing in Science and Engineering, yah 2, pp. 75
82, 2000.

[21] C. Coallo-Coallo, G. B. Lamont, and D. A. V. Valdhuizen, Evolutio~
ary Algorithms for Solving MultgObjective Problems, Second ed., set.
Genetics and Evolutionary Computation, D. E. Goldberg and J. R.
Koza, Eds. Springer, 2007.

[22] M. Vasquez and Y. Vimont, "Improved results on the 0-1 multi~
dimensional knapsack problem," European ~rourna! of Operational
Research, vol. 165, rio. 1, pp. 70-81, Augnst 2005. [Online].
Available: http://ideas.repec.org/aleee/ejored/v 165y2005ilp70-81 .Hml

[23] H. Ishibuehl and K. Narukawa, "Some issues on the implementation
of local search in evolutionary multinbjective optimization;’ in
Genetic and Evolutionary Computation, GECCO 2004, set. Lecture
Notes in Computer Science, vol. Volume 3102~2004. Springer
Berlin / Heidelberg, 2004, pp. 1246-1258. [Online]. Available:
http:l/www.springerlink.com/contentllGDAWYGAGT55RKW5

[241 A. Iaszkiewiez, "Genetic local search for multi-objective eomblnatorial
optimization," European Aournal of Operational Research, vol.
137, no. I, pp. 50-71, February 2002. [Online]. Available:
http://ideas.repee.org/a/eee/ejores/v 137y2002ilp50-71 .htnri

[25] A. S. Ramkx~mar. S. G. Ponnambalam, and N. Jawabat; "A new iterated
fast local search heuristic for solving qap fotanulatiot~ in facility layout
design," Robot Comput-lntegy Manuf, vol. 25, no. 3, pp, 620-629,
2009.

[26] S. Boetteher and A. G. Percus, "Extremal optimization for graph
partitioning," Physical Review E, vol. 64, p. 026114, 2001.

[27] E. Zitaler and L. ’Ihiele, "Multiobjective evolutionary algorithms: a
comparative case study and the strength pareto approach;’ Evolution-
ary Computation, IEEE Transactions on, vol. 3, no. 4, pp. 257-271,
Nov 1999,

[28] E. ZEzler and M. Laumanns, "Test problem suite," In
web page accessed on January 2010. [Online]. Available:
htt p://www.tik.ee.et0 z.clds op/downloaddsupp lementa&/t es tProblem Suite

[29] J, D, Knowles and D. Come, "Instance generators and test
suites for the multiobjeetive quadratic assignment problem,"
in EMO, ser. LecPare Notes in Computer Science, C. M.
Fonseea, P. J. Fleming, E. Z0aler, K. Deb, and L. Thin!e, Eds.,
vol. 2632. Sprlngel; 2003, pp. 295-310. [Onlinel. Available:
http://www.springerlink.com/content~t57tg2dekOk771x7/

[30] J. ICnowles, "The multinbjecrive quadratic assignment problem
(mqap)," In web page accessed on January 2010. [Online]. Available:
ht tp://dbkgroup.org/knowles/mQAP/

[31] E. Zitaler, "Evolutiomaty Algoritiulls for Multiobjective
Optimization: Methods and Applieatlons;’ Ph.D. disserta-
tion, ETH Zurich, Switzerland, 1999. [Onllne]. Available:
ht:p :Bwww.tik.et hz.eh/sop/publicatlons/

[32] J. Knowles and D. Come, "On meta’ies for comparing nondominated
sets," in Evolutionary Computation, 2002. CEC "02. Proceedings of
the 2002 Congress on, yah 1, May 2002, pp. 711-716.

299


	Bond University
	ePublications@bond
	7-18-2010

	A hybrid multi-objective extremal optimisation approach for multi-objective combinatorial optimisation problems
	Pedro Gomez-Meneses
	Marcus Randall
	Andrew Lewis
	Recommended Citation


	tmp.1316063645.pdf.FuB2x

