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Self-replicating Expressions in the Lambda Calculus

James Larkin Phil Stocks

School of Information Technology
Bond University,

Gold Coast, Queensland 4229
Australia

Email: {jalarkin,pstocks}@staff.bond.edu.au

Abstract

The study of self-replicating structures in Computer
Science has been taking place for more than half a
century, motivated by the desire to understand the
fundamental principles and algorithms involved in
self-replication. The bulk of the literature explores
self-replicating forms in Cellular Automata. Though
trivially self-replicating programs have been written
for dozens of languages, very little work exists that
explores self-replicating forms in programming lan-
guages.

This paper reports initial investigations into self-
replicating expressions in the Lambda Calculus, the
basis for functional programming languages. Mimick-
ing results from the work on Cellular Automata, self-
replicating Lambda Calculus expressions that also al-
low the application of an arbitrary program to arbi-
trary data are presented. Standard normal order re-
duction, however, will not reduce the sub-expression
representing the program application. Two ap-
proaches of dealing with this, hybrid reduction and
parallel reduction, are discussed, and have been im-
plemented in an interpreter.

Keywords: Self-replicating programs, Lambda Calcu-
lus, Functional Programming, Cellular Automata

1 Introduction

Two main goals of studying self-replicating programs
are to improve understanding of the basic princi-
ples and algorithms of self-reproduction and to de-
velop machines displaying or mimicking such biologi-
cal properties as self-reproduction, self-repair, growth
and evolution.

The history of self-replicating programs begins
with John von Neumann who contrived a cellular au-
tomaton that took some input, and produced as out-
put that input (von Neumann 1966). Therefore, if the
automaton itself was given as input, the automaton
would reproduce itself as output.

Cellular Automata are dynamic systems in which
space and time are discrete. They consist of an array
of cells, each of which can be in one of a finite number
of possible states. The state of each cell is determined
by the previous state of the surrounding cells, usually
specified in a rule table. Thus, each cell has an un-
derlying finite state automaton. Mitchell (1996) is a
good overview of the field.

Copyright c©2004, Australian Computer Society, Inc. This pa-
per appeared at 27th Australasian Computer Science Confer-
ence, The University of Otago, Dunedin, New Zealand. Confer-
ences in Research and Practice in Information Technology, Vol.
26. V. Estivill-Castro, Ed. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

Von Neumann’s automaton is an example of what
is known as trivial self-replication because the struc-
ture to reproduce is encoded directly within the pro-
gram or the input. This kind of trivial self-replication
is easily implemented in any programming language.
The Quine Page (Thompson) has a comprehensive
list of such programs for dozens of languages.

Von Neumann’s automaton has the capabilities of
both universal construction and computation. Uni-
versal computation is the ability to execute any com-
putational task. Universal construction is the abil-
ity to construct any kind of configuration in the cel-
lular space. Langton disregarded the capabilities of
universal construction and computation and created
an automaton capable of non-trivial self-replication
(Langton 1984, Langton 1986). The automaton is not
passed as input to itself, nor directly encoded within
itself.

Tempesti expanded on the capabilities of Lang-
ton’s automaton, by creating an automaton that first
replicates itself and then executes a directly encoded
static program (Tempesti 1995). Tempesti’s automa-
ton achieves self-replication in almost exactly the
same way as Langton’s automaton, and does not have
the capabilities of universal construction and compu-
tation. Tempesti’s automaton is not able to execute
an arbitrary given program.

Perrier, Sipper, and Zahnd’s goal was to create
an automaton capable of universal construction and
computation (Perrier, Sipper & Zahnd 1996). They
built on the concepts found in Langton’s automa-
ton and added a program and data stream into the
automaton. Their automaton first reproduces itself
along with the given program and data, and then ex-
ecutes the included program on the given data.

Outside the field of Cellular Automata, there is
very little work on self-replicating programs beyond
the most simple form of trivial replication. One very
interesting work by McKay and Essam (2001) ex-
plores self-replicating structures in (functional) pro-
gramming languages. The goal of their work was to
determine whether a program can evolve to be self-
replicating, from some initial random population of
programs. They used genetic algorithms to search
for self-replicating structures in a functional language
of their own devising. Their aim was to gain some
insight into the algorithmic aspects of the necessary
characteristics of the evolution of life.

Due to the complexity of Cellular Automata, it is
hard to explore features of self-replicating structures
implemented in cellular automata. The overall goal
of this work is to explore self-replication in the struc-
turally simpler language of the Lambda Calculus. Ini-
tial investigations into a self-replicating expression in
the Lambda Calculus that also applies an arbitrary
program to arbitrary data revealed the problem that
normal-order reduction (the standard for the Lambda
Calculus) will not execute the program on the data



in the self-replicating expression. This paper presents
the self-replicating Lambda Calculus expression sup-
porting program application and several interesting
variations of it, and then shows how the question of
executing the program expression can be addressed
using strict-order reduction, a hybrid of strict and
normal order reduction, and parallel reduction.

First, a brief overview of the relevant features of
the Lambda Calculus is presented.

2 Overview of the Lambda Calculus

Church’s work on the Lambda Calculus was moti-
vated by the desire to create a calculus of the be-
haviour of functions. The Lambda Calculus captures
functions in their fullest generality. Functions are also
values. Functions can therefore be applied to func-
tions. A function (or lambda abstraction) is intro-
duced by the symbol λ followed by the argument and
the body of the function. For example, the expression
(λa. + a 1) represents the successor function (using
prefix notation) that takes an argument a and adds
1 to it. The application of this function to an actual
argument, say 0, is written (λa. + a 1) 0. Functions
of more than one argument are Curried into expres-
sions using successive applications of functions of one
argument. For example, a function that takes two
numbers and adds them together would be written
(λx.(λy. + x y)). Parameter names are bound in the
scope of the lambda abstraction. This section only
provides an overview of aspects of the Lambda Cal-
culus relevant to this paper. For more information on
the Lambda Calculus see, for example, Barendregt
(1984) or Peyton-Jones (1987).

A functional program is an expression. A func-
tional program is executed by evaluating the ex-
pression that the program represents. Evaluation of
an expression proceeds by repeatedly selecting a re-
ducible sub-expression and reducing it until there are
no more reducible sub-expressions. There are three
main techniques used to reduce expressions: alpha-
conversion, eta-conversion, and beta-reduction.

Alpha-conversion defines the naming equivalence
between two lambda abstractions. For example,
the two abstractions (λx.x) and (λy.y) are equiva-
lent. Eta-conversion is a rule expressing the semantic
equivalence of two lambda abstractions. For exam-
ple, the two expressions (λx.+1 x) and (+ 1) behave
in exactly the same way when applied to some argu-
ment.

Beta-reduction is the main reduction technique.
Beta-reduction occurs when there is a function appli-
cation. This includes all the built-in operators (such
as arithmetic operators) and the reduction of lambda
abstractions. Beta-reduction is the replacement of the
formal parameters in the body of the lambda abstrac-
tion by copies of the arguments to the abstraction.
For example, (λa. + a 1) 0 beta-reduces to (+ 0 1),
which then beta-reduces to 1.

A Lambda Calculus expression that has no re-
ducible expressions is said to be in normal form.
When an expression contains more than one reducible
expression, the question arises of which one to reduce
first. There are two main reduction orders: normal
order reduction and applicative order reduction (also
called strict order reduction). Normal order reduc-
tion specifies that the leftmost, outermost reducible
expression is reduced first. An outermost reducible
expression is one that is not contained within any
others. Applicative order reduction specifies that the
leftmost, innermost reducible expression is reduced
first. An innermost reducible expression is one that
contains no others. The significance of applicative or-
der reduction is that the argument to a function will

be reduced (evaluated) before being passed into the
function parameter. Using normal order reduction,
the argument expression is passed in unevaluated.

Below is a simple expression containing two re-
ducible sub-expressions, which are underlined.

(λa. + a 1) (+ 2 3)

Reducing this expression using normal order reduc-
tion yields this reduction sequence

(λa. + a 1) (+ 2 3) → (+(+ 2 3) 1) → (+ 5 1) → 6

Reducing this expression using applicative order re-
duction yields this reduction sequence

(λa. + a 1) (+ 2 3) → (λa. + a 1) 5 → (+ 5 1) → 6

Church-Rosser Theorems I and II describe the
ramifications of reduction order (see, for example,
Peyton-Jones (1987)). Church-Rosser Theorem I
states that normal order reduction and applicative or-
der reduction of the same expression cannot produce
two different normal forms. Church-Rosser Theorem
II states that if an expression has a normal form, then
normal order reduction is guaranteed to find it, but
applicative order reduction is not necessarily guaran-
teed to find it. The latter can happen in the case of an
argument requiring infinite reduction that in actuality
is not needed by the expression. A very simple exam-
ple of this is the expression (λx.0) ((λx.x x) (λx.x x)).
Reducing this expression using normal order reduc-
tion yields this reduction sequence

(λx.0) ((λx.x x) (λx.x x)) → 0

Reducing this expression using applicative order re-
duction yields this reduction sequence

(λx.0) ((λx.x x) (λx.x x)) → (λx.0) ((λx.x x) (λx.x x)) → . . .

because (λx.x x) (λx.x x) beta-reduces to itself.

3 Self-replicating Expressions in the Lambda
Calculus

The most well-known self-replicating Lambda Calcu-
lus expression is (λx.x x)(λx.x x). This expression
beta-reduces to itself and therefore no normal form
exists. This expression is conceptually similar to that
of von Neumann’s cellular automaton as both take
the program as an argument and reproduce, as out-
put, the input. As seen earlier, Perrier et al. and
Tempesti added the capability of executing a program
after self-replication had been achieved. This section
discusses how to achieve this same goal in the Lambda
Calculus.

3.1 A Self-replicating Pattern with Program
Application

In order to apply a program to given data, there needs
to be an expression representing the application of
a program expression to a data expression. Let the
program to be executed be π, and the data that the
program will apply itself to be δ. In Perrier et al.
and Tempesti, self-replication is achieved before the
program is executed. The program and data are repli-
cated to the new structure during this self-replicating
stage. In the Lambda Calculus expression, the pro-
gram and data will need to be arguments into the
original self-replicating expression, so that both the



program and data replicate along with the original
expression. Here is such an expression

(λx.(λp.(λd.x x p d))) (λx.(λp.(λd.x x p d))) π δ

Tracing the reduction of this expressions yields

(λx.(λp.(λd.x x p d))) (λx.(λp.(λd.x x p d))) π δ
→ (λp.(λd.(λx.(λp.(λd.x x p d))) (λx.(λp.(λd.x x p d))) p d)) π δ
→ (λd.(λx.(λp.(λd.x x p d))) (λx.(λp.(λd.x x p d))) π d) δ
→ (λx.(λp.(λd.x x p d))) (λx.(λp.(λd.x x p d))) π δ

and it can be seen that the expression replicates it-
self. However, the program has not been applied to
the data. In the Lambda Calculus, the application of
program p to data d is represented by (p d). Here is
a modification of the previous expression that incor-
porates a program application expression

(λx.(λp.(λd.x x p d (p d)))) (λx.(λp.(λd.x x p d (p d)))) π δ

For textual brevity, let Ξ0 represent the sub-
expression (λx.(λp.(λd.x x p d (p d)))) in the reduc-
tion below. Tracing the reduction of this expression
yields

Ξ0 Ξ0 π δ
→ (λx.(λp.(λd.x x p d (p d)))) Ξ0 π δ [expanding Ξ0]
→ (λp.(λd.Ξ0 Ξ0 p d (p d))) π δ
→ (λd.Ξ0 Ξ0 π d (π d)) δ
→ Ξ0 Ξ0 π δ (π δ)

This expression has not replicated itself exactly,
but it does contain a sub-expression representing the
application of the input program π to δ. The im-
mediate problem with this expression is that it is
not well formed as the expression Ξ0 takes three
arguments but is being applied to four. This can
be addressed by adding an extra lambda abstrac-
tion to the original expression. Let Ξ1 represent
(λx.(λp.(λd.(λa.x x p d (p d))))). Using this as the
stem for the self-replicating expression and adding a
dummy initial argument α, yields

Ξ1 Ξ1 π δ α

Tracing the reduction of this expression yields

Ξ1 Ξ1 π δ α
→ (λx.(λp.(λd.(λa.x x p d (p d))))) Ξ1 π δ α [expanding Ξ1]
→ (λp.(λd.(λa.Ξ1 Ξ1 p d (p d)))) π δ α
→ (λd.(λa.Ξ1 Ξ1 π d (π d))) δ α
→ (λa.Ξ1 Ξ1 π δ (π δ)) α
→ Ξ1 Ξ1 π δ (π δ)
. . .
→ Ξ1 Ξ1 π δ (π δ)
. . .

This expression is self-replicating and contains a
sub-expression representing the application of a given
program to given data. On each self-replication, this
application expression is discarded and regenerated.
Note, that using normal order reduction, the applica-
tion of the program to the data is never reduced, so
the program is never actually executed.

A more interesting expression is one which does
not discard the application of program to data
sub-expression, but rather uses this sub-expression
in place of the data expression for the next self-
replication cycle. This expression, which no longer

needs the extra argument, is

(λx.(λp.(λd.x x p (p d)))) (λx.(λp.(λd.x x p (p d)))) π δ

Let Ξfix represent (λx.(λp.(λd.x x p (p d)))). To
see the siginificance of using Ξfix as the stem in the
self-replicating expression, consider the trace of its
reduction:

Ξfix Ξfix π δ
→ (λx.(λp.(λd.x x p (p d)))) Ξfix π δ [expanding Ξfix]
→ (λp.(λd.Ξfix Ξfix p (p d))) π δ
→ (λd.Ξfix Ξfix π (π d)) δ
→ Ξfix Ξfix π (π δ)

Again, exact self-replication is not achieved, but it
incorporates the sub-expression of the program ap-
plied to the data. Also, as before, the application of
the program to the data is never reduced in the nor-
mal order reduction of this expression. Nevertheless,
the continued reduction of this expression produces
an interesting pattern:

Ξfix Ξfix π δ
. . .
→ Ξfix Ξfix π (π δ)
. . .
→ Ξfix Ξfix π (π (π δ))
. . .
→ Ξfix Ξfix π (π (π (π δ)))
. . .

Thus, this expression replicates its basic structure and
builds the application of the program to the data to
a fixed point.1

Naturally, this expression has some structural and
conceptual similarity with the fixed-point combina-
tor Y: λh.(λx.h (x x))(λx.h (x x)). The replicating
pattern in the Y combinator is to allow recursive func-
tions to be simulated by fixed-point calculation. Self-
replication of the original expression is not the goal.
The normal-order reduction of the Y combinator ap-
plied to a suitable program and argument will calcu-
late the fixed-point application of the program to the
argument. By contrast, the self-replicating expression
has the primary goal of self-replication, which leads
to the problem described above that the application
of the program to the data is never reduced.

Two approaches for forcing the reduction of the
application of the program to the data are discussed
in Section 3.3. First, though, the next section looks
at some variations on the self-replicating expressions
discussed above.

3.2 Variations on Self-replicating Expres-
sions

The fixed point self-replicating expression builds the
application of the program to the data to a fixed point
by substituting the program application for the data
expression in the replication stage. An alternative
to this is to substitute the program application for
the program expression in the replication stage. This

1Note, the expression using Ξfix subsumes the expression
using Ξ1. The Ξ1 expression repeatedly generates the ap-
plication (π δ). A bit of trickery using the Ξfix expres-
sion and the identity function, I, can simulate that behaviour:
Ξfix Ξfix I (π δ) → Ξfix Ξfix I (I (π δ)) →
Ξfix Ξfix I (I (I (π δ))) → . . .



expression is

(λx.(λp.(λd.x x (p d) d))) (λx.(λp.(λd.x x (p d) d))) π δ

Tracing the reduction of this expression yields

(λx.(λp.(λd.x x (p d) d))) (λx.(λp.(λd.x x (p d) d))) π δ
. . .
→ (λx.(λp.(λd.x x (p d) d))) (λx.(λp.(λd.x x (p d) d))) (π δ) δ
. . .
→ (λx.(λp.(λd.x x (p d) d))) (λx.(λp.(λd.x x (p d) d))) ((π δ) δ) δ
. . .

The original program expression is lost and re-
placed with the application of the program to the
data. If this application (when reduced) yields a
value expression, the resulting expression is not well
formed. However, if the application of the program to
the data yields a function (program), this new func-
tion is now being applied to the data, which can po-
tentially yield very interesting results.

Another variant on the original expression is to
introduce a list structure for storing the results of
program applications. Typically, CONS is used
to represent the function that adds something to
the head of a list, and NIL is used to repre-
sent the empty list. See, for example, Peyton-
Jones (1987) for the full definition of these func-
tions in the Lambda Calculus. Let Ξlist represent
(λx.(λp.(λd.(λl.x x p d (CONS (p d) l))))). The ex-
pression

Ξlist Ξlist π δ NIL

builds the application of the program to the data,
but rather than discarding it, or building it to a fixed
point, puts the application onto the front of a list
taken as an additional argument. Tracing its reduc-
tion yields

Ξlist Ξlist π δ NIL
. . .
→ Ξlist Ξlist π δ (CONS (π δ) NIL)
. . .
→ Ξlist Ξlist π δ (CONS (π δ) (CONS (π δ) NIL))
. . .

The list being constructed is ((π δ) (π δ) . . . (π δ)).

A small variation to Ξlist incorporating the idea
of Ξfix will enable the construction of the list of
successive approximations to the fixed point applica-
tion of the program to the data. Let Ξfixl

represent
(λx.(λp.(λd.(λl.x x p (p d) (CONS (p d) l))))). Trac-
ing the reduction of the expression

Ξfixl
Ξfixl

π δ NIL

yields

Ξfixl
Ξfixl

π δ NIL
. . .
→ Ξfixl

Ξfixl
π (π δ) (CONS (π δ) NIL)

. . .
→ Ξfixl

Ξfixl
π (π (π δ)) (CONS (π (π δ)) (CONS (π δ) NIL))

. . .

The list being constructed is
(. . . (π (π (π δ))) (π (π δ)) (π δ)).

The variant expressions presented thus far have
assumed no structure of the data expression. If the
data expression is a list, more interesting variants are

possible.2 As an example of the potential of this, the
expression

Ξmap Ξmap π δ NIL

where Ξmap represents

(λx.(λp.(λd.(λl.x x p (TAIL d) (CONS (p (HEAD d)) l)))))

and δ is a list, simulates the standard map function,
where a function is applied to each element of a list.
This expression uses HEAD and TAIL to represent
the standard list functions for accessing the first ele-
ment of a list and the remainder of a list, respectively.
Again, see for example Peyton-Jones (1987) for their
definitions.

3.3 Reduction of Program Application in
Self-replicating Expressions

The preceding sections introduce several variations
on a self-replicating Lambda Calculus expression that
also build the application of an arbitrary program to
given data, but, using normal order reduction, the
application of the program expression to the data ex-
pression is never reduced. This section discusses using
applicative order reduction and parallel reduction to
address this issue.

As a concrete example for use in this section, con-
sider the successor function (λa. + a 1). The normal
order reduction of the fixed point self-replicating ex-
pression using this function and the initial argument
0 is

Ξfix Ξfix (λa. + a 1) 0
. . .
→ Ξfix Ξfix (λa. + a 1) ((λa. + a 1) 0)
. . .
→ Ξfix Ξfix (λa. + a 1) ((λa. + a 1) ((λa. + a 1) 0))
. . .

While the expression ((λa.+a 1) ((λa.+a 1) 0)) does
indeed represent the value 2, this concrete value is
never calculated through reduction.

3.3.1 Hybrid Normal and Applicative Order
Reduction

One approach to achieving the reduction of the pro-
gram application in the self-replicating expressions
is simply to use applicative order reduction. Un-
der applicative order reduction, the argument to a
lambda abstraction will be reduced before the beta-
reduction of the lambda abstraction. Figure 1 traces
the applicative order reduction of the fixed point self-
replicating expression applied to the successor func-
tion.

The expression replicates itself and reduces the ap-
plication of an arbitrary program to the given input.
Nevertheless, applicative order reduction generally is
not preferred because it is not always guaranteed to
reduce an expression to its normal form if the normal
form exists. A particular example is a program that
works on an infinite (or computationally prohibitive)
list, but only needs the elements of the list one at a
time to produce meaningful results. Normal order re-
duction allows such a scheme, but applicative order
reduction will require the entire list to be generated
before the program does any work.

A hybrid reduction scheme using both normal and
applicative order reduction can, perhaps, provide the

2For a program on multiple arguments, having it work on a list
of those arguments instead means the stem of the self-replicating
expression won’t have to expand to accommodate the extra argu-
ments.



Ξfix Ξfix (λa. + a 1) 0
. . .

→ Ξfix Ξfix (λa. + a 1) ((λa. + a 1) 0)

→ (λx.(λp.(λd.x x p (p d)))) Ξfix (λa. + a 1) ((λa. + a 1) 0) [expanding Ξfix]

→ (λp.(λd.Ξfix Ξfix p (p d))) (λa. + a 1) ((λa. + a 1) 0)

→ (λd.Ξfix Ξfix (λa. + a 1) ((λa. + a 1) d)) ((λa. + a 1) 0)

→ (λd.Ξfix Ξfix (λa. + a 1) ((λa. + a 1) d)) 1 [argument ((λa. + a 1) 0) → 1 before being passed to d]

→ Ξfix Ξfix (λa. + a 1) ((λa. + a 1) 1)
. . .
→ Ξfix Ξfix (λa. + a 1) ((λa. + a 1) 2)
. . .

Figure 1: Applicative order reduction of Ξfix Ξfix (λa. + a 1) 0

best of both worlds. The idea of reducing the argu-
ments to a function before passing them is appealing
because it solves the problem of the program appli-
cation not being reduced in the self-replicating ex-
pressions. In the reduction of the fixed point self-
replicating expression, the program application (π
δ) becomes an argument to the main expression af-
ter self-replication. Using applicative order reduc-
tion on this one argument would mean that this sub-
expression would be reduced before being passed into
the main expression. This expression would be re-
duced using normal order evaluation as would the rest
of the expression. The self-replicating reduction can
proceed, as can the application of the program to the
data. The data itself can potentially be an infinitely
reducing structure because it does not need to be re-
duced using applicative order evaluation. Only the
application of the program to the data requires that.

This hybrid reduction requires extending the
Lambda Calculus with a special symbol representing
applicative order evaluation. This strictness symbol
is used to wrap a particular expression. If an ex-
pression is enclosed by the strictness symbol, then
that expression is reduced before being passed into
any lambda abstraction. Otherwise, normal order re-
duction is used. The strictness symbol thus provides
the advantage of applicative order reduction when re-
quired, with normal order reduction as the default.3
Note also that if the strictness symbol is applied to
all arguments then fully applicative order reduction is
implemented. So, the strictness symbol can be used
to mimic applicative order reduction.

Hybrid reduction can solve the program applica-
tion problem in the self-replicating expressions by
wrapping the program application expression with
the strictness symbol. Using $ as the strictness sym-
bol, the new fixed-point expression is

(λx.(λp.(λd.x x p $(p d)))) (λx.(λp.(λd.x x p $(p d)))) π δ

Figure 2 traces the reduction of this expression
using the successor function as the program, where
Ξstrictfix represents (λx.(λp.(λd.x x p $(p d)))). Note
also that the successor function is modified to wrap
its body with a strictness symbol in order to fully
reduce the addition after the argument is passed in
to a.

While hybrid reduction addresses the issue of re-
ducing the program application, it requires extending
the syntax and semantics of the Lambda Calculus.

3Contrast this with an applicative-order language such as
Scheme with predefined functions delay and force to prohibit the
evaluation of an argument until it is required, thus simulating
normal-order evaluation.

3.3.2 Parallel Reduction

One of the most attractive features of functional pro-
gramming languages is that they are not inherently
sequential. At any time in the reduction of an ex-
pression, there can be a number of reducible expres-
sions. In principle, all reducible expressions could be
reduced simultaneously. A good discussion of parallel
reduction can be found in Peyton-Jones (1987). The
relevant issues are summarised below.

There are a number of possibilities as to which re-
ducible expressions should be reduced simultaneously.
One approach is to use conservative parallelism. This
type of parallelism only reduces a sub-expression if it
is known that the sub-expression will need to be re-
duced in order for the whole expression to reach its
normal form. Conservative parallelism doesn’t intro-
duce much parellelsim since it is difficult to determine
whether or not an arbitrary sub-expression will need
to be reduced. A more useful method is speculative
parallelism, which in its most liberal sense says that
every reducible expression should be reduced even
though it may not be required in the final normal
form. Speculative parallelism substantially increases
the number of expressions being reduced in parallel,
but may also introduce much work that does not in
the end need to be done.

Two problems faced when using speculative paral-
lelism are expressions that don’t have a normal form,
and expressions that have a normal form but take
a substantial amount of time or reduction steps to
reach this form. The simplest solution to both of
these problems is to reduce expressions in single steps,
i.e., to reduce all the reducible expressions in an ex-
pression by one beta-reduction.

Figure 3 traces the reduction of the fixed point self-
replicating expression using parallel reduction where
all reducible expressions are reduced by one beta-
reduction and with the successor function as the pro-
gram. The reducible sub-expressions are underlined.

Using parallel graph reduction, the application
of the program to the data is reduced. However
the expression doesn’t replicate its original form.
Interestingly, the original expression reduces to a
self-replicating form after three beta-reductions (two
steps in the above parallel reduction). This means
that the expression has essentially evolved into a self-
replicating expression.

4 Implementation

The two reduction approaches discussed in Section 3.3
have been implemented in a simple Lambda Calculus
interpreter written in the Scheme programming lan-
guage. The interpreter also supports normal order



Ξstrictfix Ξstrictfix (λa.$(+ a 1)) 0

→ (λx.(λp.(λd.x x p $(p d)))) Ξstrictfix (λa.$(+ a 1)) 0 [expanding Ξstrictfix]

→ (λp.(λd.Ξstrictfix Ξstrictfix p $(p d))) (λa.$(+ a 1)) 0

→ (λd.Ξstrictfix Ξstrictfix (λa.$(+ a 1)) $((λa.$(+ a 1)) d)) 0

→ Ξstrictfix Ξstrictfix (λa.$(+ a 1)) $((λa.$(+ a 1)) 0)

→ (λx.(λp.(λd.x x p $(p d)))) Ξstrictfix (λa.$(+ a 1)) $((λa.$(+ a 1)) 0) [expanding Ξstrictfix]

→ (λp.(λd.Ξstrictfix Ξstrictfix p $(p d))) (λa.$(+ a 1)) $((λa.$(+ a 1)) 0)

→ (λd.Ξstrictfix Ξstrictfix (λa.$(+ a 1)) $((λa.$(+ a 1)) d)) $((λa.$(+ a 1)) 0)

→ (λd.Ξstrictfix Ξstrictfix (λa.$(+ a 1)) $((λa.$(+ a 1)) d)) 1

→ Ξstrictfix Ξstrictfix (λa.$(+ a 1)) $((λa.$(+ a 1)) 1)
. . .
→ Ξstrictfix Ξstrictfix (λa.$(+ a 1)) $((λa.$(+ a 1)) 2)
. . .

Figure 2: Hybrid reduction of Ξstrictfix Ξstrictfix (λa.$(+a 1)) 0

Ξfix Ξfix (λa. (+ a 1)) 0

(λx.(λp.(λd.x x p (p d)))) Ξfix (λa. (+ a 1)) 0

→ (λp.(λd.Ξfix Ξfix p (p d))) (λa. (+ a 1)) 0

→ (λd.(λp.(λd.Ξfix Ξfix p (p d))) (λa. + a 1) ((λa. + a 1) d)) 0

→ (λd.(λp.(λd.Ξfix Ξfix p (p d))) (λa. + a 1) ((λa. + a 1) d)) 1

→ (λd.(λp.(λd.Ξfix Ξfix p (p d))) (λa. + a 1) ((λa. + a 1) d)) 2

. . .

Figure 3: Parallel reduction of Ξfix Ξfix (λa. (+ a 1)) 0

reduction. Further details on the implementation can
be found in Larkin (2003).

5 Conclusions

This paper reports preliminary investigations into
self-replicating Lambda Calculus expressions. The
goal is to explore self-replicating patterns in (func-
tional) programming languages. In contrast to
McKay and Essam, who used genetic algorithms to
evolve self-replicating programs in a functional lan-
guage, this work follows the path taken in the litera-
ture on Cellular Automata and shows how to enhance
a known self-replicating expression with the ability to
apply an arbitary function (program) to arbitrary in-
put, thus achieving self-replication and computation.

This self-replicating expression does not have a
normal form and normal order reduction, while
achieving self-replication, does not achieve applica-
tion of the program to the data. One strategy for
addressing this issue is to use a hybrid of applicative
order reduction and normal order reduction. Another
strategy is to use parallel reduction. Both approaches
achieve self-replication and program application. The
hybrid strategy is less appealing because it requires
an extension to the basic language of the Lambda
Calculus to indicate when to use applicative order
reduction. Parallel reduction is closer to the compu-
tation in Cellular Automata which is massively par-
allel. Both these approaches have been implemented
in a Lambda Calculus interpreter.

Several interesting variations on the original self-
replicating expression are presented. These variants
show how to achieve self-replication while also apply-

ing a program to a fixed point, keeping a list of the
results of program applications, applying a program
to a list of input, and mapping a program across a
list of input. Naturally, other variants are easy to
construct.

The appeal of this work over the work in Cellular
Automata is that the Lambda Calculus is so much
simpler to work with and it is easier to construct self-
replicating expressions which also apply a program to
some input where the program is actually capable of
useful computation. This simplicity and flexibility is
shown by the several variations of the original self-
replicating expression that manipulate the program
and input data in different ways.

5.1 Future Work

This paper essentially only examines one self-
replicating structure with the ability to apply a pro-
gram to input and concerns itself with the problem
of this structure’s lack of normal form. The variant
self-replicating expressions are variants on a common
“stem” expression.

Further research will explore other self-replicating
structures. The self-replicating expression discussed
in this paper is trivially self-replicating in the sense
that the original “program” is encoded in the expres-
sion as a parameter. Discovery of non-trivial self-
replicating expressions, particularly those with the
ability to apply a program to some input, would be
very interesting. Of particular interest would be an
expression that achieves some level of self-replication
with program application using only normal order
reduction. An experiment similar to McKay and



Essam’s to evolve self-replicating expressions in the
Lambda Calculus would be very interesting. The self-
replicating expression discussed in this paper, when
reduced using parallel reduction, does not replicate its
original form, but after a few reduction steps achieves
(or evolves into) a self-replicating form. Further in-
vestigation into similarly evolving patterns and the
number of reduction steps in the evolution into a self-
replicating form is warranted.

The computation of a cellular automaton is de-
fined by its starting pattern and also by the state
transition rules. The analogy to the Lambda Calculus
is that the Lambda Calculus expression is the start-
ing pattern and the reduction rules are the state tran-
sition rules. Experimenting with different reduction
rules for the Lambda Calculus would be analagous to
experimenting with different state transition rules for
cellular automata.

This paper considers self-replicating expressions in
the untyped Lambda Calculus. In the typed Lambda
Calculus, these self-replicating expressions are ill-
typed, as, indeed, is the fixed-point Y combinator.
This is due to the application of x to itself, producing
an infinite type. Investigating self-replicating expres-
sions in the typed Lambda Calculus is both challeng-
ing and interesting work.

Finally, an interesting avenue of research would be
to explore self-similarity in Lambda Calculus expres-
sions vis-á-vis fractal patterns, where the emphasis
is not on complete self-replication but on recurring
patterns of interesting sub-expressions.4
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