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Abstract. Extremal optimisation (EO) is a simple and effective tech-
nique that is influenced by nature and which is especially suitable to
solve assignment type problems. EO uses the principle of eliminating the
weakest or the least adapted component and replacing it by a random
one. This paper presents a new hybrid EO approach that consists of an
EO framework with an improved local search for the bin packing problem
(BPP). The stochastic nature of the EO framework allows the solution
to move between feasible and infeasible spaces. Hence the solution has
the possibility of escaping from a stagnant position to explore new feasi-
ble regions. The exploration of a feasible space is complemented with an
improved local search mechanism developed on the basis of the proposed
Falkenauer’s technique. The new local search procedure increases the
probability of finding better solutions. The results show that the new al-
gorithm is able to obtain optimal and efficient results for large problems
when the approach is compared with the best known methods.

1 Introduction

In recent times, a large amount of research has been undertaken to explore novel
optimisation meta-heuristics inspired by nature that can solve complex problems.
These techniques seek to use the fewest parameters with the smallest use of com-
putational time and memory. Inside the group of evolutionary meta-heuristics,
dominated by evolutionary algorithms, there is a simple and effective evolution-
ary method of optimisation proposed by Boettcher and Percus [1] called extremal
optimisation (EO) which is appropriate for solving combinatorial problems. The
principle behind EO is to eliminate the weakest or the least adapted component
value and replace it by a random one at each iteration without having to tune
many parameters.

A hybrid extremal optimisation (HEO) algorithm is presented which finds
solutions through the collaborative use of EO with an improved tailor-made local
search technique for BPP proposed by Falkenauer [2]. The original technique
consists of redistributing a series of items between non-full bins using three
different steps. The aim is to reduce the number of necessary bins needed to
contain all the items by at least one for each application of the algorithm. In the



proposed local search approach, we add a fourth step that achieves improved
results. The EO part of this approach allows the solution state to move between
feasible and infeasible spaces. This movement permits the exploration of the
search space without being stuck in a particular region of the landscape. The
results show that the new hybrid algorithm is able to obtain optimal results for
large problems. The advantage of this proposal is its simplicity of implementation
compared to other techniques [2, 3, 4, 5, 6, 7].

Given this new approach, we test the behaviour of HEO on the BPP us-
ing well-known benchmark problems from the OR-Library [8]. The results show
that the proposed algorithm is an effective approach and competitive with other
methods [2, 3, 6, 7].

The rest of this paper is organised as follows. In Section 2, a summary of EO
is given while Section 3 explains the HEO algorithm to solve the BPP. Section
4 presents an analysis of the obtained results. Finally, in Section 5 we conclude
and discuss the future work arising from this research.

2 Extremal Optimisation

EO is an evolutionary meta-heuristic proposed by Bak and Sneppen [9] based on
a model of co-evolution between species. This model describes species’ evolution
via extinction events as a self-organised critical (SOC) [10] process. SOC tries to
explain the manifestation of complex phenomena in nature such as the formation
of sand piles and the occurrences of earthquakes [11]. The main characteristic is
that a power law describes the events in the system. Simply put, these systems
have some critical points that are configured in a particular way. When an event
converges toward one of these points, a critical state is reached which triggers a
series of changes over the elements nearby to the critical point. The system is
self-organised to reach a new state of equilibrium. Finally, the system evolves in
a transient period of stability until then next critical point is reached.

A good way to understand EO’s characteristics is to compare it with an-
other well-known method such as the genetic algorithms (GA) [12]. First, a GA
commonly has a set of parameters to be tuned for proper operation; however, in
EO only one specific parameter must be tuned. Second, in EO the fitness value
is not calculated for each structure that represents a solution as in a GA but
for each component of the structure. Each component is evaluated according to
its contribution in obtaining the best solution. Third, canonical EO works with
a single solution instead of a population of solutions as in GA. Last, EO re-
moves the worst components for the next generations; in contrast, GA promotes
a group of elite solutions.

There is only one EO specific parameter that is often referred to as τ [13].
This parameter is used probabilistically to choose the component value to be
changed at each iteration of the algorithm. The algorithm ranks the components
and assigns to them a number from 1 to n using the fitness of each one (where
n in the number of components). Therefore, the fitness must be sorted from
the worst to the best evaluated. Then a selection method such as roulette wheel



(RWS) is used to choose the component whose value will be changed to a random
one according to the probability calculated for each component as is shown in
Equation 1. If the new component makes the solution the best found so far,
according to the evaluation function, then this solution is saved as Xbest. The
EO process is shown in Algorithm 1.

Pi = i−τ ∀i 1 ≤ i ≤ n, τ ≥ 0 (1)

where:
n is the total number of components evaluated and ranked, and

Pi is the probability that the ith component is chosen.

Algorithm 1 Standard EO pseudo-code for minimisation problem
Generate an initial random solution X=(x1, x2, . . . , xn) and set Xbest = X;
Generate the probabilities array P according to Equation 1;
for a preset number of iterations do

Evaluate and rank fitness λi for each xi from worst to best, 1 ≤ i ≤ n;
j = Select component based on the probability of its rank Pi using RWS;
xj = Generate a random appropriate value that is not equal to xj ;
Eva(X) = Evaluate the new solution;
if Eva(X) < Eva(Xbest) then Xbest = X;

end for
Return Xbest and Eva(Xbest);

3 HEO for the BPP

This section shows how the HEO approach is implemented to deal with the
BPP. Section 3.1 presents a brief and concise definition of the BPP. Section 3.2
describes the improved local search developed for the BPP. Section 3.3 intro-
duces the HEO approach for the BPP using a integrated version of EO with the
proposed local search mechanism.

3.1 The Bin Packing Problem

Many production and distribution tasks require that a series of items with differ-
ent shapes, sizes, or weights be packed into bins or boxes with a limited capacity.
The BPP is a known NP-hard combinatorial optimisation problem (COP) [14]
and the one-dimensional bin packing problem is the simplest version of this
problem and can be formally described as follows.

A infinite set of bins with a one size bin capacity C > 0, and a finite set of
n items wi = {w1, w2, . . . , wn} with different weights among 0 < wi ≤ C is to
be packed. Find the smallest number m of bins needed to contain all of the n
items such that the weight of the items packed in each bin must not exceed the
bin capacity C, and that one item wi can be in one and only one bin.



The bin packing problem could be applied to tasks such as to backup of tapes
or disks of equal capacity, to allocate data onto blocks memory with the same
size, or to assign processes on a system with identical parallel processors. All
these tasks follow the idea of minimising the wastage of resources in the bins.

3.2 A Local Search for the BPP

Local Search (LS) is a mechanism used by some variants of evolutionary heuris-
tics to improve the quality of solutions they receive. LS is commonly used as an
iterative process that starts with a feasible solution and then this is improved
by performing local modifications. This process is repeated until the current
solution can not become better.

Preliminary research by Hendlass and Randall [4] showed the benefits of
applying a LS at EO to solve 15 BPP instances ranging in size from 120 items
to 500 items. Motivated by this promising result, we apply a improved LS to
help solve a large set of 80 BPP instances ranging in size from 120 items to 1000
items. We take as a base the LS mechanism proposed by Falkenauer [2] which
in turn was inspired by the work of Martello and Toth [7]. This LS mechanism
was also applied to an ant colony approach by Levine and Ducatelle [6].

The augmented improved LS implementation can be explained as follows.
The procedure begins by moving all the items contained inside the two least
full bins into a (temporary) free bin. Four sequential steps are then applied for
each bin that is not full. These steps consist of interchanging one or two items
between the current bin and the bin with free items so that the current bin could
be refilled up to the limit. The first step swaps two current items by two free
items, the second step swaps two current items by one free item and the third
step swaps one current item by one free item. The new fourth step swaps one
current item by two free items. Next, free items are reinserted into bins provided
that the latter have enough space to contain it. Finally, the remaining items in
the free bin are put them into a new bin.

This local search process is repeated while new solutions are feasible. The
aim of this local search is to reduce by one the number of necessary bins to
contain every item.

3.3 A HEO implementation for the BPP

One of the main characteristics of EO is its ability to locate a possible optimal
solution stochastically in search space. This characteristic enables EO to avoid
being trapped in a local optimum; however, this characteristic also hinders EO
from being able to refine the search when a solution is near to the optimal
result. Recent research has reported the achievement of better results on some
optimisation problems when a local search technique complements EO [4, 15,
16, 17]. Therefore, HEO is made up of an EO framework and a local search
procedure that is executed every time a feasible solution is found.

HEO starts by generating an initial solution using the Best Fit Decreasing
(BFD) strategy [18]. BFD sorts the items in decreasing order according to its



weight and then trys to put an item into a bin that has minimal free space.
BFD guarantees to use no more than 11

9 B+1 bins [18], where B is the optimum
number of bins. The reason for generating an initial solution using BFD, rather
than purely at random, is based on our interest in minimising the initial numbers
of bins necessary to contain all the items. That is done with the goal of making
the process more efficient.

As solutions in EO can move between infeasible and feasible space (see Ran-
dall [17]), the next step is to carry out an appropriate selection process for both
cases. These processes follow the EO scheme but with a slight modification.

When the current solution is feasible, the bin with the largest free space
available is selected since the aim of BPP is to minimise the numbers of bins. One
item is picked randomly from the selected bin to be moved into other available
bin which is chosen according to the new EO rules. Hence, these bins are ranked
by a fitness value which is defined as follows:

λj =
Rj
Nj

∀j such that 0 < Rj < C (2)

where:
Rj is the current weight of the jth bin,

Nj is the number of items in the jth bin, and

λj is the fitness of the jth bin.

The idea of this selection process is to try to put the item in a bin where the
relation used space/number of items is the smallest. This means that between
two bins with the same free space to receive a new item, it is preferable to use
the bin with more items of small size. This is because if the bin gets overloaded
then it is easier to adjust several small items than a few big items within the bin
for the infeasible solution procedure and so to obtain a feasible solution again.

On the other hand, when the current solution is infeasible, the most over-
loaded bin is selected since this bin degrades the solution. A light item is chosen
with a greater probability than a heavy item from the selected bin as it is less
likely to overload another bin. Next, the bin to which the item will be added
is chosen between non-full bins according to the EO rules. Thus, these bins are
ranked by a fitness value using Equation 2.

Finally, the new solution is accepted and evaluated to see if it is feasible or
not. In the case that a better feasible solution is obtained, the best solution found
so far is updated and the local search process is invoked. Algorithm 2 shows the
steps to solve the BPP using the HEO approach.

4 Computational Experiments

The proposed HEO method was coded in the C language and compiled with gcc
version 4.3.0. The computing platform used to perform the tests has a 1.86 GHz
Intel Core2 CPU and 917 MB of memory, and runs under Linux.

The set test used in this paper comes from the OR-Library [8]. This test
was contributed by Falkenauer [2] and consists of 80 problems which are divided



Algorithm 2 Pseudocode of the HEO model for the BPP
Initialise a feasible solution S using the BFD method and set Sbest ← S ;
Generate the probabilities array P according to Equation 1;
Snew = LocalSearch(S);
Evaluate the new solution Eva(Snew);
if Eva(Snew) < Eva(Sbest) then Sbest ← Snew;
for a preset number of iterations do

if the current solution is feasible then
Select the emptiest bin and choose a random item;

else
Select the most overloaded bin and choose a light item;

Evaluate and rank the fitness λi for the remaining bins with free space using Eq. 2;
Choose a bin based on the probability of its rank Pi using RWS;
Put the selected item into the chosen bin;
Evaluate the new solution Eva(Snew);
if Snew is feasible then

if Eva(Snew) < Eva(Sbest) then Sbest ← Snew;
Snew = LocalSearch(Snew);
if Eva(Snew) < Eva(Sbest) then Sbest ← Snew;

end for

into 4 groups of 20 problems. Each of these has 120, 250, 500 and 1000 items.
The items’ weight are spread uniformly between 20 and 100 and the capacity
for all bins is 150. The problem’s name is presented through the nomenclature
uNNN PP where NNN is the number of items and PP is the problem’s identifi-
cation. Each problem is accompanied by its theoretical optimal result.

All results are presented as a percentage gap determined using the theoretical
optimal solution and the solution obtained by each analysed method. It is defined
as %gap = b−a

b × 100, where a is the cost of the obtained solution and b is the
cost of the theoretical optimal solution. A value of 0 means that the method
found the optimal.

The first part of the experiments describes the results when a local search
mechanism is applied. Here, the local search method proposed by Falkenauer [2]
is compared with the improved version proposed in this paper when one new step
is added. Table 1 shows the results of the BSD method, the 3 step Falkenauer
method and the 4 step proposed method. The latter two were tested using the
BSD result as the initial solution. As can be seen, the improvement made in the
new version with respect to the Falkenauer’s local search method gave better
results for 52 out of 74 problems where the initial solution is not optimal. Also,
the average percentage gap for the four groups decreased from around 1.1% to
under 0.67%. That means that for the four groups the improved local search
method was able to find closer results to the theoretical solution. Thus, the
improved local search method is chosen to be used in the next part when the
HEO approach is implemented.

In the second part, HEO is configured to run 10 test trials. The number of
iterations to complete a HEO process is of 100000. The τ parameter is set at



Problem Theo BFD % FLS % PLS % Problem Theo BFD % FLS % PLS %
name Opt gap gap gap name Opt gap gap gap

U120 00 48 49 2.08 49 2.08 48 0 U500 00 198 201 1.52 201 1.52 200 1.01
U120 01 49 49 0 49 0 49 0 U500 01 201 204 1.49 203 1 202 0.5
U120 02 46 47 2.17 46 0 46 0 U500 02 202 205 1.49 204 0.99 203 0.5
U120 03 49 50 2.04 50 2.04 49 0 U500 03 204 207 1.47 207 1.47 206 0.98
U120 04 50 50 0 50 0 50 0 U500 04 206 209 1.46 209 1.46 208 0.97
U120 05 48 49 2.08 48 0 48 0 U500 05 206 207 0.49 207 0.49 206 0
U120 06 48 49 2.08 49 2.08 49 2.08 U500 06 207 210 1.45 210 1.45 209 0.97
U120 07 49 50 2.04 50 2.04 49 0 U500 07 204 207 1.47 207 1.47 206 0.98
U120 08 50 51 2 51 2 51 2 U500 08 196 199 1.53 198 1.02 198 1.02
U120 09 46 47 2.17 47 2.17 47 2.17 U500 09 202 204 0.99 203 0.5 202 0
U120 10 52 52 0 52 0 52 0 U500 10 200 202 1 202 1 201 0.5
U120 11 49 50 2.04 50 2.04 49 0 U500 11 200 203 1.5 203 1.5 202 1
U120 12 48 49 2.08 49 2.08 49 2.08 U500 12 199 202 1.51 202 1.51 201 1.01
U120 13 49 49 0 49 0 49 0 U500 13 196 198 1.02 198 1.02 196 0
U120 14 50 50 0 50 0 50 0 U500 14 204 206 0.98 206 0.98 204 0
U120 15 48 49 2.08 49 2.08 48 0 U500 15 201 204 1.49 203 1 202 0.5
U120 16 52 52 0 52 0 52 0 U500 16 202 205 1.49 204 0.99 203 0.5
U120 17 52 53 1.92 53 1.92 53 1.92 U500 17 198 201 1.52 201 1.52 200 1.01
U120 18 49 50 2.04 49 0 49 0 U500 18 202 205 1.49 204 0.99 203 0.5
U120 19 49 50 2.04 50 2.04 50 2.04 U500 19 196 199 1.53 198 1.02 199 1.53

Average 1.44 1.13 0.62 Average 1.34 1.14 0.67

Problem Theo BFD % FLS % PLS % Problem Theo BFD % FLS % PLS %
name Opt gap gap gap name Opt gap gap gap

U250 00 99 100 1.01 100 1.01 99 0 U1000 00 399 403 1 403 1 401 0.5
U250 01 100 101 1 101 1 100 0 U1000 01 406 411 1.23 410 0.99 407 0.25
U250 02 102 104 1.96 103 0.98 103 0.98 U1000 02 411 416 1.22 414 0.73 415 0.97
U250 03 100 101 1 101 1 100 0 U1000 03 411 416 1.22 416 1.22 415 0.97
U250 04 101 102 0.99 102 0.99 102 0.99 U1000 04 397 402 1.26 400 0.76 399 0.5
U250 05 101 104 2.97 103 1.98 102 0.99 U1000 05 399 404 1.25 404 1.25 403 1
U250 06 102 103 0.98 103 0.98 102 0 U1000 06 395 399 1.01 399 1.01 396 0.25
U250 07 103 105 1.94 104 0.97 104 0.97 U1000 07 404 408 0.99 408 0.99 406 0.5
U250 08 105 107 1.9 106 0.95 106 0.95 U1000 08 399 404 1.25 402 0.75 403 1
U250 09 101 102 0.99 102 0.99 102 0.99 U1000 09 397 404 1.76 402 1.26 403 1.51
U250 10 105 106 0.95 106 0.95 106 0.95 U1000 10 400 404 1 404 1 401 0.25
U250 11 101 103 1.98 102 0.99 102 0.99 U1000 11 401 405 1 405 1 403 0.5
U250 12 105 107 1.9 107 1.9 106 0.95 U1000 12 393 398 1.27 397 1.02 395 0.51
U250 13 102 104 1.96 104 1.96 103 0.98 U1000 13 396 401 1.26 401 1.26 397 0.25
U250 14 100 101 1 101 1 100 0 U1000 14 394 400 1.52 399 1.27 397 0.76
U250 15 105 107 1.9 107 1.9 106 0.95 U1000 15 402 408 1.49 407 1.24 406 1
U250 16 97 99 2.06 98 1.03 98 1.03 U1000 16 404 407 0.74 407 0.74 405 0.25
U250 17 100 101 1 101 1 100 0 U1000 17 404 409 1.24 408 0.99 407 0.74
U250 18 100 102 2 102 2 101 1 U1000 18 399 403 1 402 0.75 402 0.75
U250 19 102 103 0.98 103 0.98 102 0 U1000 19 400 406 1.5 406 1.5 403 0.75

Average 1.52 1.23 0.64 Average 1.21 1.04 0.66

Table 1. Results for the initial BSD solution, Falkenauer local search (FLS) and the
proposed local search (PLS). Note that the number of bins and the % gap are shown.

1.4 which has been reported in previous research [4, 17, 19] as a good value to
obtain efficient solutions.

The results generated by the HEO approach, shown in Table 2, are compared
with those reported by Martello and Toth (MTP) [7], Alvim et al. (LS-BPP) [3],
Falkenauer (HGGA) [2], Levine and Ducatelle (HACO) [6], and Randall, Hendt-
lass and Lewis (SEO, PEO) 3 [20]. For the four methods that do not use EO, the
results are presented only using one column that shows the % gap with respect to
the theoretical solution. The remaining three methods that use EO, the results
are presented by three columns, “mi%”, “me%”, and “ma%” which denote the
minimum, median and maximum % gap respectively.

3 SEO means EO with a single solution. POE means EO with a population of solutions.
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HEO is confirmed to be an efficient and competitive approach to solve the
BPP. In 77 out of 80 problems, the theoretical optimal result was found, only one
less than HACO which found 78. The result of the three remaining bins (u250 07,
u250 12, u250 13) is only one bin from the theoretical optimal solution. In fact,
the problem u250 13 has no solution for the theoretical optimal as is reported
in Levine and Ducatelle [6].

Despite the good results obtained by the previous two works where EO is
applied (SEO and PEO), we can infer from the development of HEO that the
better results are due to the use of a good initial solution, the improved local
search mechanism and the modified EO selection process.

In Table 3 we can observe the excellent runtime of HEO in relation to the
other methods. Indeed, the difference in the average time among four test group
is quite similar which shows a balanced performance in relation to the number
of items to be packed.

Problem name MTP time LS-BPP time HGGA time HACO time HEO time

u120 370 0.2 381 1 1
u250 1516 6.7 1337 52 1.2
u500 1535 37.25 1015 50 1.2
u1000 9393 143.55 7059 147 1.8

Table 3. Average time, in seconds, for each group test.

5 Conclusions

This paper has described a Hybrid EO approach for the BPP. EO is a recent
form of search for which there exists a relatively small amount of work that is
applicable to COPs. Some of the research has been in combining EO with a
local search mechanism to obtain better solutions. The strength of HEO, which
is EO and improved local search, lies in exploiting the stochastic nature of EO
as a coarse grain solver to move solutions from stagnant positions to explore new
regions toward the optimal result. Besides, the improved local search mechanism
works in a fine grain way to find better solutions from the last found feasible
solution.

Results obtained for the uniformly distributed test set with HEO have been
encouraging. This approach has been able to find the optimal solution for 77 out
of 80 problems. For the three remaining problems, the result was only 1 item
from the theoretical optimal solution. Note that for one of these three problems,
it is not possible to find the optimal solution.

When the proposed HEO is compared to the existing evolutionary approaches,
we can see that HEO is able to obtain quality solutions as good as the best of
them. The advantage that our approach has low requirements of runtime, mem-
ory, parametrisation and implementation.

The proposed approach could be adapted to solve other problems such as the
cutting stock problem, the multiprocessor scheduling problem, and the graph
colouring problem. Also, we are looking to adapt the algorithm presented to
solve the multi-objective version of BPP.
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