
Bond University
ePublications@bond

Information Technology papers Bond Business School

7-1-2009

Computing sequences and series by recurrence
Stephen J. Sugden
Bond University, ssugden@bond.edu.au

Follow this and additional works at: http://epublications.bond.edu.au/infotech_pubs

Part of the Numerical Analysis and Computation Commons, and the Other Mathematics
Commons

This Book Chapter is brought to you by the Bond Business School at ePublications@bond. It has been accepted for inclusion in Information
Technology papers by an authorized administrator of ePublications@bond. For more information, please contact Bond University's Repository
Coordinator.

Recommended Citation
Sugden, Stephen J., "Computing sequences and series by recurrence" (2009). Information Technology papers. Paper 82.
http://epublications.bond.edu.au/infotech_pubs/82

http://epublications.bond.edu.au?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/infotech_pubs?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/business?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/infotech_pubs?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/185?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F82&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au
mailto:acass@bond.edu.au
mailto:acass@bond.edu.au


Chapter 8

Computing Sequences and Series
by Recurrence

8.1. Background

Many commonly-used mathematical functions may be computed via carefully-constructed
recurrence formulas. Sequences are typically defined by giving a formula for the general
term. Series is the mathematical name given to partial sums of sequences. In either case
we may often take advantage of the great expressive power of recurrence relations to create
code which is both lucid and compact. Further, this does not necessarily mean that we must
use recursive code. In many instances, iterative code is adequate, and often more efficient.

A recurrence takes advantage of the fact that to compute the next term, we can often
obtain it from the previous term with a little extra effort. To use a direct formula, we need
to start from scratch each time. To use a recurrence formula, we just make an adjustment to
the previous term. For example, consider the simple formula for a sequence of powers of
two. We have an = 2n. Now suppose you were given the value of a15 = 215 = 32768 and
were asked to compute a16 = 216. Most of the work is already done, since 216 = 2×215 =
2×32768 = 65536. Here, we have implicitly made use of the simple recurrence an = 2an−1.
The quantity an denotes the nth term, and an−1 is the one before it. We can derive the
recurrence as follows. To obtain an−1 we simply replace each occurrence of n in the direct
formula for an by n− 1. To get the recurrence, take the quotient of an and its predecessor
an−1.

an = 2n

an−1 = 2n−1

∴ an

an−1
=

2n

2n−1 = 2

As a general rule of thumb, if a direct formula involves power, factorials, or exponential
functions, we can often obtain a recurrence by considering the ratio an/an−1. If the formula
for an involves addition and subtraction, and perhaps polynomials, it is usually better to
consider an−an−1.

As noted, even if a function may be defined by a series or by a recurrence, this does
not mean that explicit recursive programming has to be used. Almost always, iteration is



76 Stephen John Sugden

entirely adequate. A simple example will illustrate this point. We compute the exponential
function ex by using the familiar power series of eq 8.1.

ex =
∞

∑
k=0

xk

k!
= 1+

x
1!

+
x2

2!
+

x3

3!
+ . . . (8.1)

Of course, we cannot add an infinite number of terms, so we truncate the series after a
certain point. If x is moderate positive value, say 1 or 2, the series will be rapidly convergent
and we obtain a good estimate of ex even if we take about the first 7 or 8 terms. We may
show that the truncation error committed by ignoring the rest of the series is very small.
We have:

ex ≈
n

∑
k=0

xk

k!
= 1+

x
1!

+
x2

2!
+

x3

3!
+ . . .+

xn

n!

We suppose that x≥ 0 and consider the truncation error, which is given by eq 8.2. The
following steps, culminating in eq 8.3, give one possible upper bound for the truncation
error, En(x).

En (x) =
xn+1

(n+1)!
+

xn+2

(n+2)!
+

xn+3

(n+3)!
+ . . . (8.2)

=
xn+1

(n+1)!

(
1+

x
n+2

+
x2

(n+2)(n+3)
+ . . .

)

<
xn+1

(n+1)!

(
1+

x
n+2

+
x2

(n+2)2 + . . .

)

<
xn+1

(n+1)!

(
1+

x
n+1

+
x2

(n+1)2 + . . .

)

=
xn+1

(n+1)!
n+1

n+1− x

=
xn+1

(n+1− x)n!
(8.3)

This last expression gives us a reasonable upper bound for the error introduced by ig-
noring the remainder of the power series. For example, suppose that we take x = 2 and
n = 10. Our upper bound is then:

xn+1

(n+1− x)n!
=

211

9×10!
= 6.2708×10−5

By increasing n to 15, we have, for x = 2:

xn+1

(n+1− x)n!
=

216

14×15!
' 3.5797×10−9

Using values of x greater than 1 is not wise as convergence is slower. Even to compute
e = e1 itself, it is better to compute e0.5 and then square the result. Compare the convergence



Computing Sequences and Series by Recurrence 77

for x = 0.5 compared with x = 2. Substituting x = 0.5 and n = 10 in eq 8.3, we have:

E10(0.5) <
0.511

(10+1−0.5)10!
' 1.2815×10−11

This is better accuracy than for 15 terms when x = 2. Practical algorithms to compute
functions like ex,sinx,cosx first of all use properties of the function itself to reduce x to
a suitable interval. Convergence is then much faster. We now consider how we can use a
recurrence to compute our estimate for ex.

To develop a recurrence for the terms of the sum, we first write each term as tk = xk/k!
Then, replacing t by t−1, we have:

tk =
xk

k!

tk−1 =
xk−1

(k−1)!

Taking the quotient of these two equations we have:

tk
tk−1

=
xk

k!
÷ xk−1

(k−1)!
=

xk

k!
× (k−1)!

xk−1 =
x
k

Therefore

ex ≈
n

∑
k=0

tk

where tk = x
k tk−1 k ≥ 1

and t0 = 1

This is a very simple recurrence which can be used to generate the terms of the sum,
up to say 10 or 15 terms. It may be coded, along with some code to test it out in Delphi
as follows. A better approach would be to code it as a function, to reduce x to a suitable
interval, and perhaps to make the number of terms a function of x. This is left as an exercise.

8.2. Computation of π

We continue with the idea of using recurrences to compute fundamental mathematical func-
tions, or even constants. Perhaps the most famous constant is π, the ratio of any circle ’s
circumference to its diameter. There is an amazing variety of formulas to compute the first
digits of π. In Delphi, π is itself also an intrinsic constant. Of course, the constant π is
of fundamental importance in higher mathematics, as well as its relatively humble role in
computing circumferences and areas of circles. The number 2π is the period of the circular
(trigonometric) functions, and the five most important constants of all, viz., 0,1,e, i,π are
related via the equation eiπ +1 = 0.

We give just a few formulas for computing π, code some of them into Delphi and then
compare performances. Many more formulas (all infinite sums) are given in [15] and also
at the site [58].



78 Stephen John Sugden

8.2.1. The Wallis Product

As well as infinite sums, there are infinite products for π.Perhaps the most famous is the
Wallis product, given here by eq 8.4.

π = 2
∞

∏
n=1

(2n)2

(2n−1)(2n+1)
(8.4)

This product is not very good for computation as it converges far too slowly. We should
avoid it. We implement it here only for comparison purposes. It is extremely sluggish. Can
you see why?

8.2.2. Machin-Like Sums of Arctangents

A very simple infinite sum for π is derived from the fact that π = 4arctan1. Using the
infinite series, eq 8.5, for arctanx, we have eq 8.6.

arctanx =
∞

∑
n=1

(−1)n−1x2n−1

2n−1
= x− 1

3
x3 +

1
5

x5− 1
7

x7 +O
(
x9) (8.5)

π = 4
(

x− 1
3

+
1
5
− 1

7
+

1
9
− . . .

)
(8.6)

The formula in eq 8.6 also has very poor convergence properties. We should avoid it,
too. However, with a little algebra, we can find some very much better ones. Consider the
formula of Machin, eq 8.7.

π
4

= 4arctan
1
5
− arctan

1
239

(8.7)

We use the arctanx intrinsic in Delphi to evaluate π, using eq 8.7.

8.2.3. Ramanujan’s Sum

We compare both of these with an approximation using the infinite series of Ramanujan
given by eq 8.8.

1
π

=
∞

∑
n=0




(
2n
n

)

16n




3

42n+5
16

(8.8)

In order to estimate 1/π using eq 8.8, we develop a recurrence for the general term,
which we denote by cn; that is,

cn =




(
2n
n

)

16n




3

42n+5
16

Proceeding as before, we write the corresponding expression for cn−1.



Computing Sequences and Series by Recurrence 79

cn−1 =




(
2n−2
n−1

)

16n−1




3

42n−37
16

Since the formulas for cn and cn−1 both have lots of powers and factorials, taking the quo-
tient leads to lots of cancellation. We have:

cn

cn−1
=




(
2n
n

)

(
2n−2
n−1

)




3

×
(

16n−1

16n

)3

× 42n+5
42n−37

=
(

(2n)!(n−1)!(n−1)!
n!n!(2n−2)!

)3

× 1
163 ×

42n+5
42n−37

=
(

2n(2n−1)
n2

)3

× 1
163 ×

42n+5
42n−37

=
1

512

(
2− 1

n

)3 42n+5
42n−37

Thus, we have eq 8.9. Notice the massive amount of cancellation that led to it and the
comparative simplicity of this final recurrence.

cn =
(

2− 1
n

)3 42n+5
42n−37

cn−1

512
(8.9)

If we regard the cube in eq 8.9 as just two multiplications, we have nothing here but the
four operations of arithmetic—no complex powers, factorials or exponentials.

8.3. Bernoulli Numbers

The previous subsections used various series to show how the powerful recurrence tech-
nique may be used to compute common mathematical functions or constants. A somewhat
more challenging exercise along similar lines is to compute the so-called Bernoulli numbers
bm for 0≤ m≤M. These numbers are important in many areas of mathematical investiga-
tion, including the derivation of compact formulas for sums of powers [8]. First we define
b0 = 1 and thereafter, for m > 0, bm is defined by the recurrence of eq 8.10.

m

∑
j=0

(
m+1

j

)
b j = 0 (8.10)

In eq 8.10, the factor
(

m+1
j

)
is the usual binomial coefficient. For 0 ≤ j ≤ m, it is

given by: (
m+1

j

)
=

(m+1)!
j!(m+1− j)!

(8.11)



80 Stephen John Sugden

Solving eq 8.10 for bm, we have

bm =−
m−1

∑
j=0

1
m+1

(
m+1

j

)
b j (8.12)

We may now develop a recurrence for the coefficient of b j in the sum of eq 8.12. Writing

c(m)
j =

1
m+1

(
m+1

j

)

we have

c(m)
j−1 =

1
m+1

(
m+1
j−1

)

so that

c(m)
j

c(m)
j−1

=

(
m+1

j

)

(
m+1
j−1

) =
m+2− j

j
(8.13)

Clearing fractions on the left side of eq 8.13, we now write

c(m)
j =

m+2− j
j

c(m)
j−1 (8.14)

This means that we can compute c(m)
j from the recurrence of eq 8.14. Delphi code for

computing ex,π and the Bernoulli numbers follows.

unit Unit1;
interface uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TForm1 = class(TForm)

Memo1: TMemo;
BernoulliButton: TButton;
ExitButton: TButton;
ExpButton: TButton;
PiRamanujanButton: TButton;
ClearButton: TButton;
PiButton: TButton;
PiButtonEq5: TButton;
WallisButton: TButton;
procedure BernoulliButtonClick(Sender: TObject);
procedure ExitButtonClick(Sender: TObject);
procedure ExpButtonClick(Sender: TObject);
procedure PiRamanujanButtonClick(Sender: TObject);
procedure ClearButtonClick(Sender: TObject);
procedure PiButtonClick(Sender: TObject);
procedure PiButtonEq5Click(Sender: TObject);
procedure WallisButtonClick(Sender: TObject);

end;
var

Form1: TForm1;



Computing Sequences and Series by Recurrence 81

implementation
{$R ∗.dfm}
const tab = chr(9);
type float = double;

procedure TForm1.BernoulliButtonClick(Sender: TObject);
const mmax = 40;
var m, j : integer; c, b : array[0..mmax] of double;
sum : double;
begin

memo1.lines.add(’m’ + tab + ’B[m]’);
b[0] := 1.0; b[1] := −0.5;
for m := 2 to mmax do begin

c[0] := 1/(m + 1);
sum := c[0]; // this is the zeroth term c[0]∗b[0]
for j := 1 to m − 1 do begin

c[j] := c[j − 1]∗(m + 2 − j)/j;
sum := sum + c[j]∗b[j]

end;
b[m] := −sum;
if not odd(m) then

memo1.lines.add(inttostr(m) + tab + floattostr(b[m]))
end;

memo1.lines.add(’’)
end;

procedure TForm1.ExitButtonClick(Sender: TObject);
begin

close
end;

procedure TForm1.ExpButtonClick(Sender: TObject);
var k, z : integer; x, term, sum, diff : double; s : string;
begin

s := ’x’ + tab + ’exp(x) approx’ + tab + ’exp(x) exact’ + tab + ’diff’;
memo1.lines.add(s);
for z := 10 to 20 do begin

x := z; x := x/10.0;
term := 1.0;
sum := term;
for k := 1 to 10 do begin

term := term∗x/k;
sum := sum + term;

end;
diff := sum − exp(x);
s := floattostr(x) + tab + floattostr(sum);
s := s + tab + floattostr(exp(x)) + tab + floattostr(diff);
memo1.lines.add(s);

end
end;

procedure TForm1.PiRamanujanButtonClick(Sender: TObject);
const nmax = 10;
var n : integer; p, term, sum, error : extended; s : string;
begin



82 Stephen John Sugden

memo1.lines.add(’#terms’ + tab + ’pi estimate’ + tab + tab + ’error’);
term := 5.0/16.0;
sum := term;
for n := 1 to nmax do begin

term := term∗(42∗n + 5)/(42∗n − 37)/512;
term := term∗(2 − 1/n)∗(2 − 1/n)∗(2 − 1/n);
sum := sum + term;
p := 1/sum;
error := p − pi;
s := floattostr(n) + tab + floattostrf(p, ffgeneral,22,20) +

tab + floattostr(error);
memo1.lines.add(s)

end
end;

procedure TForm1.ClearButtonClick(Sender: TObject);
begin

memo1.clear
end;

procedure TForm1.PiButtonClick(Sender: TObject);
// Salamin−Brent
var a, b, c, t, s, p, temp, error : extended; k : integer;
msg : string;
begin

k := 0;
a := 1.0;
b := 1.0/sqrt(2.0);
s := 0.5;
t := 1.0;
repeat

inc(k);
t := 2∗t; // assert t = 2ˆk
temp := (a + b)/2; // temp is new value of a
b := sqrt(a∗b);
a := temp;
c := a∗a − b∗b;
s := s − t∗c;
p := 2∗a∗a/s;
error := p − pi;
msg := floattostr(k) + tab + floattostrf(p, ffgeneral,22,20);
msg := msg + tab + floattostr(error);
memo1.lines.add(msg)

until abs(error)< 1.0e−16
end;

procedure TForm1.PiButtonEq5Click(Sender: TObject);
var i, j : integer; z, sum, f, error : extended;
msg : string;
begin

i := 0;
z := 1.0; // z is 16ˆ(−i)
sum := 0.0;
repeat

j := 8∗i;



Computing Sequences and Series by Recurrence 83

f := 4/(j + 1) − 2/(j + 4) − 1/(j + 5) − 1/(j + 6);
sum := sum + z∗f;
error := sum − pi;
msg := floattostr(i) + tab + floattostrf(sum, ffgeneral,22,20);
msg := msg + tab + floattostr(error);
memo1.lines.add(msg);
inc(i);
z := z/16.0

until abs(error)< 1.0e−16
end;

procedure TForm1.WallisButtonClick(Sender: TObject);
var twon : integer; factor, product, error : extended;
msg : string;
begin

product := 2.0;
twon := 0;
msg := ’n’ + tab + ’pi estimate’ + tab + tab + ’error’;
memo1.lines.add(msg);
repeat

twon := twon + 2;
factor := sqr(twon)/(twon∗twon − 1);
product := product∗factor;
error := product − pi;
msg := floattostr(twon div 2) + tab +

floattostrf(product, ffgeneral,22,20);
msg := msg + tab + floattostr(error);
memo1.lines.add(msg);

until twon = 500
end;

end.

8.3.1. Mutual Recursion

We consider further application of recurrences to generate sequences. The difference here
is that two intertwined sequences are required. These are defined by so-called mutual re-
currences. We illustrate the ideas by an example from calculus. A situation in which such
recurrences occur frequently is in elementary integral calculus. It is here that we often
encounter integrals such as:

In =
∫ ∞

0
xne−x (8.15)

or

Jn =
∫ 2π

0
xsinnxdx (8.16)

or perhaps

Kn =
∫ π

0
xn sinxdx (8.17)

The common features of these are that they contain an integer parameter, usually de-
noted n. In this chapter we consider the evaluation of certain trigonometric integrals using



84 Stephen John Sugden

mutual recursion and compare this approach with alternative techniques which make use of
arrays and simple iteration. The integrals we study are defined by eqs 8.18 and 8.19.

sn =
∫ π

0
xn sinxdx n≥ 0 (8.18)

cn =
∫ π

0
xn cosxdx n≥ 0 (8.19)

The foregoing integrals are defined for all integers n ≥ 0. Taking n ≥ 1, and using
integration by parts on the indefinite integral corresponding to eq 8.18, we have:

∫
xn sinxdx =

∫
xnd(−cosx)

= −xn cosx+n
∫

xn−1 cosxdx

Applying the limits of integration, and noting the definition of cn from eq 8.19, we have:

sn =
∫ π

0
xn sinxdx

= [−xn cosx]π0 +n
∫ π

0
xn−1 cosxdx

= −πn cosπ+ncn−1

= πn +ncn−1

Similar steps for eq 8.19 are:

∫
xn cosxdx =

∫
xnd(sinx)

= xn sinx−n
∫

xn−1 sinxdx

Applying the limits of integration, and noting the definition of sn from eq 8.18, we have:

cn =
∫ π

0
xn cosxdx

= [xn sinx]π0−n
∫ π

0
xn−1 sinxdx

= 0−nsn−1

= −nsn−1

Finally, in order to use the recurrences for computation, we need initial values. these
are easily obtained by substituting n = 0 in eqs 8.18 and 8.19:

s0 =
∫ π

0
x0 sinxdx =

∫ π

0
sinxdx = 2 (8.20)

c0 =
∫ π

0
x0 cosxdx = cosxdx = 0 (8.21)



Computing Sequences and Series by Recurrence 85

In summary, we have:

sn = πn +ncn−1; n≥ 1 (8.22)

s0 = 2 (8.23)

cn = −nsn−1; n≥ 1 (8.24)

c0 = 0 (8.25)

Our task here is to write efficient code to evaluate the two sequences (sn) and (cn)
for small to moderately large values of ṅ. Since the sequences are defined recursively,
it is natural, perhaps, to write recursive code. Noting that the term πn may also be defined
recursively, it is rather straightforward to develop the following recursive solution in Delphi.

The standard forward declaration is required because we need an exception to the usual
Pascal (Delphi) rule that all objects must be declared before the first use or reference. Since
Pascal is designed to be compilable in one-pass of the source text, the statement simply tells
the compiler what kind of thing cc is, so that it may be checked both when referenced and
defined later in the code.

Delphi Code

unit mutrecur;
interface uses

Windows, Messages, SysUtils, Classes, Graphics, Controls,
Forms, Dialogs, StdCtrls, Buttons;

type
TForm1 = class(TForm)

Memo1: TMemo;
GenerateButton: TButton;
ExitButton: TButton;
DumpButton: TButton;
RecursiveGenerationButton: TButton;
Button1: TButton;
procedure ExitButtonClick(Sender: TObject);
procedure GenerateButtonClick(Sender: TObject);
procedure DumpButtonClick(Sender: TObject);
procedure RecursiveGenerationButtonClick(Sender: TObject);
procedure Button1Click(Sender: TObject);

end;

var
Form1: TForm1;

implementation
const nmax = 10;
var s,c,p:array[0..nmax] of double;
{$R ∗.DFM}

procedure TForm1.ExitButtonClick(Sender: TObject);
begin

close
end;



86 Stephen John Sugden

procedure TForm1.GenerateButtonClick(Sender: TObject);
var n:integer;
begin

c[0] := 0.0; s[0] := 2.0; p[0] := 1.0;
for n := 1 to nmax do p[n] := pi∗p[n − 1];
for n := 1 to nmax do begin

s[n] := p[n] + n∗c[n − 1];
c[n] := −n∗s[n − 1]

end
end;

procedure TForm1.DumpButtonClick(Sender: TObject);
var n:integer; msg:string;
begin

memo1.lines.add(’n’ + #9 + ’c[n]’ + #9 + ’s[n]’);
for n:=0 to nmax do begin

msg := inttostr(n) + #9;
msg := msg + floattostrf(c[n],fffixed,15,5) + #9;
msg := msg + floattostrf(s[n],fffixed,15,5);
memo1.lines.add(msg)

end
end;

procedure TForm1.RecursiveGenerationButtonClick(Sender: TObject);
var n:integer;

function cc(n : integer) : double; forward;

function pp(n : integer) : double;
begin

if n = 0 then result := 1
else result := pi∗pp(n − 1)

end;

function ss(n : integer) : double;
begin

if n = 0 then result := 2.0
else result := pp(n) + n∗cc(n − 1)

end;

function cc(n : integer) : double;
begin

if n = 0 then result := 0.0
else result := −n∗ss(n − 1)

end;

begin
for n := 0 to nmax do begin

p[n] := pp(n);
c[n] := cc(n);
s[n] := ss(n)

end
end;

procedure TForm1.Button1Click(Sender: TObject);



Computing Sequences and Series by Recurrence 87

begin
memo1.clear

end;

end.

Comments on the Two Implementations

Note that two approaches to recursion have been used. The recursive code just shown is
logically correct, simply by inspection. Unfortunately, it has a number of very serious
shortcomings, foremost of which is gross inefficiency. In essence, the inefficiency arises
from recomputing the same quantities over and over again without making use of them
to evaluate subsequent elements of the two sequences. The second approach uses arrays
to store the generated sequence elements. This method is in fact iterative, but certainly
based on the mathematical recurrences. Note the compactness of the code. It is also worth
noting that the iterative algorithm represented by this code may be easily implemented in a
spreadsheet such as Excel.

Definition and Implementation

Here, we have a very clear example of the principle of trading memory for computing time.
In essence, with extra storage, we can often reduce computation time. This is very definitely
the case here. The simple expedient of not only storing the computed values in two arrays,
but also making use of them for intermediate computations, saves us an enormous amount
of computation. Thus, while correct, the fully recursive solution previously presented is a
very good example of how not to solve this problem. In fact it illustrates a very important
general principle: the separation of definition from implementation. Just because something
is defined recursively does not mean it must be computed recursively.

Recursion is, without doubt, a very powerful concept indeed, both from the mathemati-
cal and computing viewpoints. From the mathematical standpoint, it is very closely related
to the powerful proof technique of mathematical induction. This has widespread application
in computer science, including algorithm correctness proofs and certain considerations of
algorithm complexity. In many practical instances, recursively-defined sequences are better
computed by using iteration, usually with arrays to store the generated terms, which may
then be easily re-used to generate further terms. This rule of thumb has become increas-
ingly valid as the cost of main memory has plummeted in recent years, and it has become
common to have desktop PCs or laptops with several gigabytes of RAM.

8.4. Catalan Numbers

In this section we consider various means of computing the well-known Catalan numbers.
This sequence of natural numbers may be defined by at least two quite different , as well
as by a direct formula. Again, one of the main points we wish to make in this chapter is
that many sequences defined by direct formulae are most easily computed via recurrence



88 Stephen John Sugden

relations. Just as with the sequences of Chapter 8, this does not mean that explicit recur-
sion need be used to compute them. Indeed, it is often better to avoid this approach. What
is meant is that, even if given a direct formula, a (simpler) recurrence can sometimes be
found, and this then used with iteration, and sometimes arrays, may be used to very effi-
ciently compute the sequences. Such an approach may be thought of as a well-designed
combination of processing power and memory. The dictum that extra memory may be
used to make an algorithm run faster certainly applies in the computation of sequences of
numbers. It applies especially to the efficient computation of the Catalan numbers.

Definition 6 The order of a recurrence relation (formula) is the difference between the
highest and lowest values of the sequence index which appear in the relation. For example
xn = 2xn−1 has order 1 (first-order), while am + 2a2

m−1−5am−2 = 0 is of order 2 (second-
order). The Catalan recurrence just below is of variable order, as xn depends on the entire
history, from x0 to xn−1.

Definition 7 Given an integer, n≥ 0, we define the nth Catalan number, xn, to be the num-
ber of topologically distinct binary trees with n nodes. Using this definition, we obtain,
x0 = 0, and by recursive reasoning, for n > 0:

xn =
n

∑
r=0

xrxn−r−1 (8.26)

8.4.1. Applications of Catalan Numbers

Catalan numbers have application to enumeration of binary trees, parenthesizing arithmetic
expressions, and elsewhere. A useful, modern introduction to this topic may be found, for
example, in [35]. Just as strong induction is logically equivalent to ordinary induction, we
transform a “variable order” recurrence (xn apparently depends on all its predecessors) into
one of first order (xn depends on just its immediate predecessor). We observe that a recur-
rence with fixed initial conditions yields only one sequence, whereas any given sequence
may be generated from arbitrarily many recurrences. Therefore, we have an equivalence
class of recurrences: all generate the same sequence (Catalan numbers). A similar situa-
tion arises in the theory of Boolean expressions, where we usually seek one member of an
equivalence class which is in some sense canonical or simplest. This is clearly related to
simplicity of computer implementation in a modern conventional 3GL such as Delphi, or
even a spreadsheet such as Microsoft Excel.

Next, we note that in order to find alternative recurrence relations, some mathematics
(i.e., algebra) has to be done. For the Catalan recurrence, one may use the standard theory
of generating functions to derive a simple closed form expression (direct formula) for the
sequence.

This direct formula may now be used to derive a much simpler recurrence which is easy
to implement in a spreadsheet such as Excel, and indeed, much more efficiently computable
in a 3GL such as Delphi. More conventional recurrences, such as linear, second order are
very easy to implement in a spreadsheet such as Excel. However, the defining recurrence for
Catalan numbers given by eq 8.26 is not easily realized in Excel, or any other conventional



Computing Sequences and Series by Recurrence 89

spreadsheet program, certainly not without use of Visual BASIC, which is just another 3GL
anyway.

The fact the Catalan recurrence is hard to implement in Excel may give some clue as to
its unsuitability for naive computational implementation in a conventional 3GL. If a naive
recursive implementation is attempted in Delphi (or any 3GL supporting recursion), it is
unimaginably inefficient. If one uses an array to store the sequence elements, then the recur-
sive definition of eq 8.26 is perfectly acceptable as a guide to implementation. This example
illustrates two important programming and mathematical principles. Firstly, we have, yet
again, an instance of the ubiquitous principle of trade-off of memory and computation time.
The time for computation is simply intolerable for the naive recursive implementation, but
quite acceptable if an array is used to store already generated elements, and then either re-
cursion or iteration used to obtain the next element in the sequence. Secondly, there is a
much simpler recurrence (first order, in fact) available to compute the Catalan numbers.

8.4.2. Direct Formula for Catalan Numbers

As noted, by using the theory of generating functions, a direct formula for xn is available.
This work is beyond our scope here, but see, for example, [46]. The formula, valid for all
n≥ 0 is given by eq 8.27. It may be written as explicit factorials, or in terms of a .

xn =
(2n)!

n!(n+1)!
=

1
n+1

(
2n
n

)
(8.27)

How is this to be computed? It is not at all obvious that xn, as defined by eq 8.27, will be
integral for arbitrary integer n ≥ 0. The numbers are all integers, and the numerator (2n)!
of eq 8.27 is huge, even for modest values of n. It will overflow if computed naively with
integer variables in a conventional 16-bit 3GL for extremely small values of n; n > 3, to be
precise. The denominator is similarly large. Once again, we need a recurrence, which is, at
least in the case of first order, essentially a discrete derivative.

Another recurrence
Simply considering the ratio of successive terms in eq 8.27 yields, for n≥ 1:

xn

xn−1
=

(2n)!
n!(n+1)!

× n!(n−1)!
(2n−2)!

(8.28)

=
(2n)!

(2n−2)!
× (n−1)!

(n+1)!
(8.29)

=
2n(2n−1)

1
× 1

n(n+1)
(8.30)

=
4n−2
n+1

(8.31)

We end up with:

xn =
(

4n−2
n+1

)
xn−1 (8.32)

Note that this last recurrence is first order, linear and homogeneous! It is trivial to compute
the Catalan numbers in Excel, in a 3GL such as Delphi, or even with simple calculator



90 Stephen John Sugden

using this recurrence. The lesson from this is that some mathematical insight may trans-
form an intractable computation into something that is quite trivial. Thinking must precede
computation, and mathematics is our systematic and precise way of thinking.

8.4.3. Asymptotics

Another benefit of eq 8.32 is that the asymptotic behaviour of xn may be seen as roughly
xn = O(4n). We have, from eq 8.32

xn =
(

4n−2
n+1

)
xn−1 =

(
4− 6

n+1

)
xn−1 (8.33)

If not for the negative term −6/(n + 1), eq 8.33 would not just be approximately
asymptotically 4n, it would be exactly 4n. This diminishing term tells us to expect that
xn is sub-asymptotic to 4n. The real truth is given by the relationship (8.34). This means
that xn divided by the expression on the right approaches 1 as n → ∞. Equivalently,
ln(xn)− n ln4 + 1.5lnn + 0.5lnπ should approach zero. This may be obtained by taking
logarithms of the quotient of the left and right sides of (8.34).

xn ∼ 4n

n3/2
√

π
(8.34)

It is clear from eq 8.33, by induction on n, and the fact that x0 = 1 = 40, that xn must
always be less than 4n. This knowledge may be useful to programmers in order to estimate
when overflow might occur. The asymptotic behaviour is also obtainable with consider-
able extra effort from eq 8.27 by use of Stirling’s formula [9] and [54], but, once again, a
knowledge of mathematics, not programming, is needed here. A simple Microsoft Excel
model implementing eq 8.32 is shown in Figure 8.2 and the corresponding chart in Figure
8.1. An interesting aspect of the Catalan sequence which may be observed is that xn does
not overtake 3n until n reaches 17.

8.4.4. Delphi Code to Compute Catalan Numbers

There is nothing too remarkable about the code, save for one point. When computing xn

from xn−1 using (8.32), it is necessary to do the (integer) division last. If this is not done,
then some truncation may occur and then a false result will ensue.

unit Unit1;
interface uses

Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
Dialogs, StdCtrls;

type
TForm1 = class(TForm)

Memo1: TMemo;
RunButton: TButton;
ExitButton: TButton;
ClearButton: TButton;
procedure ExitButtonClick(Sender: TObject);
procedure RunButtonClick(Sender: TObject);
procedure ClearButtonClick(Sender: TObject);



Computing Sequences and Series by Recurrence 91

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

n

ln x[n]

n ln 3

n ln 4

Figure 8.1. Graph of Catalan numbers versus exponentials.

end;
var

Form1: TForm1;

implementation
{$R ∗.dfm}

procedure TForm1.ExitButtonClick(Sender: TObject);
begin

close
end;

procedure TForm1.RunButtonClick(Sender: TObject);
const nmax = 20; tab = chr(9);
var n : integer; x : int64; msg : string; z : extended;
begin

n := 0;
x := 1; // x[0] = 1
msg := ’n’ + tab + ’x[n]’ + tab + tab + ’ln(x[n])’ + tab;
msg := msg + ’n∗ln(3)’ + tab + ’n∗ln(4)’;
memo1.lines.add(msg);
repeat

msg := inttostr(n) + tab + inttostr(x);



92 Stephen John Sugden

n x[n] 3^n x[n] -  3^n ln x[n] n ln 3 n ln 4
0 1 1 0 0 0 0
1 1 3 - 2 0 1.099 1.386
2 2 9 - 7 0.693147181 2.197 2.773
3 5 27 - 22 1.609437912 3.296 4.159
4 14 81 - 67 2.63905733 4.394 5.545
5 42 243 - 201 3.737669618 5.493 6.931
6 132 729 - 597 4.882801923 6.592 8.318
7 429 2187 - 1758 6.061456919 7.69 9.704
8 1430 6561 - 5131 7.265429723 8.789 11.09
9 4862 19683 - 14821 8.489205155 9.888 12.48

10 16796 59049 - 42253 9.728896042 10.99 13.86
11 58786 177147 - 118361 10.98165901 12.08 15.25
12 208012 531441 - 323429 12.24535105 13.18 16.64
13 742900 1594323 - 851423 13.51831673 14.28 18.02
14 2674440 4782969 - 2108529 14.79925057 15.38 19.41
15 9694845 14348907 - 4654062 16.08710486 16.48 20.79
16 35357670 43046721 - 7689051 17.3810259 17.58 22.18
17 129644790 129140163 504627 18.68030888 18.68 23.57
18 477638700 387420489 90218211 19.98436515 19.78 24.95
19 1767263190 1162261467 605001723 21.29269797 20.87 26.34
20 6564120420 3486784401 3077336019 22.60488436 21.97 27.73
21 24466267020 10460353203 14005913817 23.92056115 23.07 29.11
22 91482563640 31381059609 60101504031 25.23941423 24.17 30.5
23 343059613650 94143178827 2.48916E+11 26.56117007 25.27 31.88
24 1289904147324 2.8243E+11 1.00747E+12 27.88558903 26.37 33.27

Figure 8.2. Tabulation of Catalan numbers versus exponentials.

z := x; z := ln(z);
if n < 16 then msg := msg + tab;
msg := msg + tab + floattostrf(z,ffgeneral,5,3);
msg := msg + tab + floattostrf(n∗ln(3),ffgeneral,5,3);
msg := msg + tab + floattostrf(n∗ln(4),ffgeneral,5,3);
memo1.lines.add(msg);
inc(n);
if n <= nmax then

x := (4∗n − 2)∗x div (n + 1)
until n > nmax

end;

procedure TForm1.ClearButtonClick(Sender: TObject);
begin

memo1.clear
end;

end.

8.5. Exercises

1. Code the Delphi procedure of section 8.1. to use a function to estimate ex.



Computing Sequences and Series by Recurrence 93

2. Euler’s constant is defined as

γ = lim
n→∞

((
n

∑
k=1

1
k

)
− lnn

)

Develop an algorithm in Delphi to estimate it, correct to 10 decimal places. This
value is γ ' 0.5772156649. Convergence will be extremely slow. How to accelerate
it? A much more rapidly-converging series is given at [3].

γ =
αn

∑
k=1

(−1)k−1 nk

k× k!
− lnn+O

(
e−n)

In this equation, α' 3.59 and is the positive root of α(lnα−1) = 1. To determine γ
to d decimal places, we require n' d ln10. Develop a suitable recurrence to compute
the sum, implement the formula and compare the value and rate of convergence with
the estimate obtained from the definition.

3. The beta B(m,n) function for integer parameters m and n is defined as follows:

B(m,n) =
(m−1)!(n−1)!

(m+n−2)!

Develop suitable recurrence(s) to compute this function for 1 ≤ m ≤ n ≤ 10. Imple-
ment the recurrence in Delphi and extend the program to tabulate the output to a
memo box or textfile.

4. Extend the Delphi program for Bernoulli numbers to compute the Bernoulli polyno-
mials Bn (x). These may be defined in various ways. Perhaps the simplest for our
purpose is:

Bn(x) =
n

∑
k=0

(
n
k

)
bkxn−k

5. By using integration by parts or otherwise, find recurrences for the following inte-
grals, then develop efficient Delphi code to evaluate them.

(a) ∫ ∞

0
xne−x (8.35)

(b) ∫ 1

0
xm (1− x)n dx (8.36)

(c) ∫ π/2

0
sinmxcosnxdx (8.37)

6. Prove eq 8.26.



94 Stephen John Sugden

7. Prove eq 8.27.

8. Use induction to show that xn > 3n for n≥ 17.

9. Use the recurrence of eq 8.32 to compute the Catalan numbers in Excel for n≤ 20.

10. Find the smallest positive integer n for which xn ≥ 3.5n, and then prove that the
inequality is also true for all subsequent values of n by induction.

11. Earlier, we said that ln(xn)−n ln4+1.5lnn+0.5lnπ should approach zero as n→∞.
Extend the Delphi code to check this. Note that this expression cannot be computed
for n = 0.

12. Write a Delphi program to compute the Catalan numbers up to x20 using the defining
recurrence, eq 8.26, and an array to store the terms of the sequence. Use iteration,
not recursion.


	Bond University
	ePublications@bond
	7-1-2009

	Computing sequences and series by recurrence
	Stephen J. Sugden
	Recommended Citation


	tmp.1250729103.pdf.9tTvx

