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Abstract

In telecommunications network design, nodes need to be linked in an
economical way to handle expected traffic. Capacity constraints, degree
constraints and hop limits are to be respected. A genetic algorithm with
some novel features is described. The crossover method generates an
optimal child solution for the parents selected.

1 Introduction
We discuss a genetic algorithm for the following problem of network design:
nodes such as telephone exchanges are to be linked in order to carry expected
traffic between source-destination pairs. Each possible link has a cost per unit of
traffic carried, and a capacity limit on traffic carried. There are also constraints
on volume of traffic carried through each individual node and on the number
of connections to each node (degree limit). In addition, there is a limit on the
number of links on each path along which traffic is carried (hop limit). We
would like to satisfy the traffic demand by using links which give us the lowest
cost solution whilst respecting the constraints.

1.1 Formulation

Let G be the set of all undirected graphs on n nodes with G a member of the
set. We represent the same G by an upper triangular node-node adjacency
matrix B, with elements bij. The problem is to find a member, G∗, which
minimizes the cost of transporting required origin-destination flows subject to
specified link-node capacity, node degree and chain hop limit constraints. The
total bandwidth (flow) requirement on virtual path connections between O-D
pair p−q is given by F pq (without loss of generality represented as an element of
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an upper triangular matrix). The partial flow along the route r between nodes
p and q is denoted by hpqr .C

pq
r is the cost per unit flow on this route, given by

Cpq
r =

X
i,j

cija
pq
ij,r

where apqij,r is 1 if the link (i, j) exists on route r between nodes p, q; 0
otherwise.
The linear mathematical programming formulation is given in 1-8.
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fij ≤ 2umaxi (4)

0 ≤ fij ≤ fmaxij (5)

X
(i,j)

apqij,r ≤ Hmax ∀p, q, r (6)

nX
j=1

(bij + bji) ≤ dmaxi ∀i (7)

0 ≤ hpqr ∀p, q, r (8)

In this formulation, n is the number of nodes, fmaxij is the upper bound on
the available capacity (total flow) on the link (i, j), Hmax is the upper bound
imposed on the number of links in a route (the hop limit). Solutions may be
expressed in several different ways. In this work, they are generated as flows
on chains. Thus we seek an optimal network synthesis and optimal chain flow
pattern. Various alternative formulations of the problem are discussed in [7]; the
formulation has a significant impact on the appropriate solution technique. The
problem is related to classical work on network flows but adds further realistic
constraints, thus making it applicable to industry-based problems.
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2 Solution Representation
Genetic Algorithms (GAs) belong to a broad class of function optimization tech-
niques known as evolutionary computing. GAs are modeled on the biological
selection and reproduction of genetic material, known as chromosomes. This
follows a Darwinian or natural selection approach in which the fittest chromo-
somes survive and reproduce while the others perish [8]. In terms of network
optimization, the chromosomes represent potential network topologies. In this
paper, we explore the application of GAs to this problem, as few empirical
studies have so far been undertaken.
In designing a genetic algorithm, a key feature is the representation of a

solution to the problem in the form of a chromosome. This causes particular
problems in the context of network design, where the solutions are large and
any simple way of performing a crossover on two complete solutions is likely to
be ineffective because the child solution will usually be infeasible.
This problem may be circumvented by storing as a chromosome not the so-

lution itself, but some more compact string from which the solution may be
derived. In earlier work, the network topology was used as the chromosome,
from which an optimum solution may be obtained by linear programming (LP),
so long as the cost function is linear [4]. Crossover, while not trivial, is achiev-
able for this representation. This approach has considerable appeal because the
problem is divided into a discrete and a continuous part, with the genetic al-
gorithm finding the topology, and the LP optimizing the flows on the topology.
For this particular chromosome, the time taken by the LP procedure is a serious
problem for large networks, despite our use of the well-tested MINOS code of
Murtagh and Saunders [9].
Another approach is to use a permutation of the nodes as a very compact

chromosome. We then need an heuristic procedure, controlled by the permuta-
tion, which generates good quality solutions. Provided this heuristic is efficient,
we then have a method which solves large problems in acceptable time, since
crossover on permutations is simple and well understood [8]. The main draw-
back is that since the number of permutations is much less than the number of
feasible solutions, the heuristic procedure can generate solutions in only a small
subset of the solution space, and the optimum solution will often lie outside this
space. Of course genetic algorithms usually do not find optimum solutions for
large problems, so this disadvantage may not be serious.
An alternative method is described here which uses yet another form of

chromosome, containing most of the solution details. We use an array of strings,
each string representing a path used to carry traffic in the solution. The only
information discarded from the solution is the quantity of flow on each path.

3 Solution generation
Since the ow quantities are missing, if we wish to regenerate a complete solution
from a chromosome of this type, then linear programming (or an heuristic) must
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Figure 1: Figure 1 Link costs for example

be used to find the optimum allocation of flow on the paths. When a new child
chromosome is created, the same process is used to generate a complete solution.
However, the paths available will be fewer than those which are available from
the topology, and hence the flow optimization is faster than with a method
which uses the topology as a chromosome.

3.1 Crossover

A problem with the crossover technique of reproduction is that it often produces
infeasible child solutions [8]. To overcome this, we allow the LP solver to perform
the crossover as well as the ow optimization aspects of the problem.
Instead of constructing a new chromosome from sections of the parent chro-

mosome, restricting the new chromosome to a fixed size, we commence by form-
ing the union of the parent chromosomes. That is, we construct the set of all
paths used to carry traffic in both parents.
This set of paths is then passed to the LP and flows optimized on this larger

set of paths. In general, not all paths will carry traffic in the optimum flow
pattern. The paths actually used become the child chromosome.
An advantage of the method is that provided we can generate an initial

population of feasible solutions, then the feasibility of each subsequent solution
is guaranteed, since we solve a problem which has two known solutions (the
parents).
Another feature is that the child is the optimum solution which can be gen-

erated from these parents. This means that the genetic algorithm will converge
more rapidly than a normal GA. If mutation is not implemented, then the GA
will often converge to a solution which consists of the optimum allocation of flow
on the set of all paths which were present in the initial population of solutions.
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Table 1: Two Parent Solutions
Solution A Solution B
Path Traffic Path Traffic
1,2 5 1,2 5
1,3 7 1,3 8
1,2,3 1 1,4 10
1,4 10 2,3 1
2,1,3 3 2,1,3 2
2,4 6 2,4 6
3,2,4 2 3,2,4 2

3.2 Example

A simple four node problem is used to illustrate the method. The link costs
appear in Figure 1. The matrix of traffic demands is as follows:⎛⎜⎜⎝

0 5 8 10
0 0 3 6
0 0 0 2
0 0 0 0

⎞⎟⎟⎠
The capacity of each link is 10 units, and the capacity of each node is 30

units. The hop limit is 2 links. Two solutions to this problem, expressed as
flows on paths/ are shown in Table 1.

To obtain a child solution from these parents, we discard the flow quantities
and produce the union of these paths:

{(1, 2) , (1, 2, 3) , (1, 3) , (1, 4) , (2, 3) , (2, 1, 3) , (2, 4) , (3, 2, 4)}

This enlarged set is submitted to the LP for flow allocation, and unused paths
are discarded. In this trivial example, the better parent is obtained again, as a
child.

3.3 Initial population

An initial population is obtained using a method devised during some earlier
work [5]. For each solution, a random permutation of the nodes is first generated.
Then the nodes are taken in the permutation order and a modified version of
a single source shortest path algorithm used as a means of satisfying the traffic
demand from each node. Modifications to the standard algorithm are needed
to take into account node capacities, link capacities and hop limits. The initial
population serves as a good starting point since it contains a variety of good
paths for satisfying the traffic demand.
Figure 2 Solution progress with various problem sizes
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Table 2: Summary of results
n Init cost Best cost Time (sec)

min mean max min mean max min mean max
10 373 373 373 373 373 373 4 4 4
20 1517 1525 1537 1511 1521 1529 16 17 18
30 2510 2525 2538 2510 2519 2532 63 68 75
40 5905 5913 5925 5885 5896 5902 223 226 231
50 8882 8906 8949 8882 8899 8907 505 564 755

3.4 Selection and mutation

Parents are chosen for breeding using a standard roulette wheel technique [8]
which favours solutions of low cost. Currently, the method is operating without
mutation, and thus is restricted to using paths which are present in the initial
population of solutions. The subsequent processing has the task of choosing the
best combination of paths and of finding the best allocation of flows on those
paths.

4 Results
Behavior with a single 10 node problem is shown below with various population
sizes. Because the heuristic for creating the initial population generally performs
very well, the GA has a very good starting point. It then finds worthwhile
improvements quite rapidly. This is demonstrated in Figure 2. The execution
time is dominated by the repeated calls to the LP solver to allocate flows for
each solution. The elapsed time for problems of various sizes appears in Figure
3.
GAs make essential use of randomness, and the initial population is random

in this case. Hence there is value in solving each problem a number of times
(10 in our case). Table 2 shows typical results from solving problems of sizes
ranging from 10 to 50 nodes.
Since we have not yet implemented limitations on node degree in this method,

we do not yet have direct comparisons for the quality of the solutions derived
by this method. However some limited comparison is possible.
For a 10 node problem [3] with known solution of 1723 using a degree limit

of 4, the method generates a solution of value 1672. However the solution
has a node with degree 5. For a problem of size 50 (op cit), a solution with
objective 238,382 was obtained using an earlier method. This is now known to
be far from optimal, since we have obtained a solution of value 107,296 with
the newer methods. Again, a direct comparison is not appropriate/ since this
better solution contains two nodes with degree higher than 8.
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Figure 2: Processing time

5 Discussion
Even without mutation we are getting good quality solutions in reasonable time.
Part of the credit must go to the good initial population. It is also gratifying
that the breeding process gives rapid improvement. The lack of mutation limits
the ultimate solution quality. The paths used in the initial population provide
an envelope for our solutions which we cannot escape. We plan to introduce
mutation in the next version of the algorithm, and also the handling of degree
limits at each node. Incorporation of degree limits appears to be quite diffi-
cult. Mutation may be achieved in many ways and is comparatively trivial to
implement.

6 Acknowledgment
We thank James Montgomery for the initial implementation of the algorithm.
This work was supported by a grant from the Australian Research Council.

References
[1] Ahuja R. K., Magnanti T. L., and Orlin, J. B., Network Flows, Prentice-Hall,

1993.

[2] Berry, L.T.M., McMahon, G.B., Murtagh, B.A. and Sugden, S.J., Design of
communication networks: formulations and solution strategies, APORS’97,
The Fourth Conference of the Asian-Pacific Operational Research Society,
within IFORS (1997).

7



[3] Berry, L.T.M., Murtagh, B.A., McMahon, G.B., Sugden, S.J. and Welling,
L.D. Genetic algorithms in the design of complex distribution networks.
International Journal of Physical Distribution and Logistics Management,
28, No. 5, pp377-381 (1998).

[4] Berry, L.T.M., Murtagh, B.A., McMahon, G.B., Sugden, S.J. and Welling,
L.D. An integrated GA-LP approach to communication network design.
Telecommunication Systems Journal (1990).

[5] Berry, L.T.M., Murtagh, B.A., McMahon G.B., Randall, M. and Sugden,
S.J., Fast network design for telecommunications. Technical Report TR99-
11, Bond University School of Information Technology (1999).

[6] Berry L. T. M., Murtagh B.A., Sugden S.J., and McMahon G.B., Applica-
tion of a genetic-based algorithm for optimal design of tree-structured com-
munications networks. Proceedings of the Regional Teletraffic Engineering
Conference of the International Teletraffic Congress, South Africa, Septem-
ber 1995, pp. 361-370.

[7] Berry, L.T.M., McMahon, G.B., Murtagh, B.A. and Sugden, S.J., Optimiza-
tion models for communication network design. Proceedings of the Fourth In-
ternational Meeting of The Decision Sciences Institute, Sydney, July 1997.

[8] Goldberg D. E., (1989), Genetic Algorithms in Search, Optimization and
Machine Learning, Addison Wesley, (Reading).

[9] Murtagh B. A. and Saunders M. A., (1987), MINOS 5.1 Users Manual,
Report SOL 83-R, Dept. of Operations Research, Stanford University.

8


	Bond University
	ePublications@bond
	12-1-2006

	Network Design With A Genetic Algorithm
	Stephen J. Sugden
	Graham McMahon
	Marcus Randall
	Les Berry
	Bruce Murtagh
	Recommended Citation


	ndwithga.dvi

