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the μ-th order fractional derivatives for 0<μ<1. Through the power of Excel we illustrate the continuous
deformations dynamically through conditional formatting. Some applications are discussed and a connection
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Abstract

Many students of calculus are not aware that the calculus they have learned is a
special case (integer order) of fractional calculus. Fractional calculus is the study of
arbitrary order derivatives and integrals and their applications. The article begins by
stating a naive question from a student in a paper by Larson (1974) and establishes, for
polynomials and exponential functions, that they can be deformed into their derivative
using the μ-th order fractional derivatives for 0 < μ < 1. Through the power of Excel
we illustrate the continuous deformations dynamically through conditional formatting.
Some applications are discussed and a connection made to mathematics education.
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1 Introduction

In a 1974 paper, Larson relates a story that occurred in his calculus class. A student asked,
after a class exercise that required students to sketch the derivative of a function by looking
at the function’s graph, “If we sketched the half-derivative wouldn’t its graph be about half
way between the function and its first derivative?” [11, p68].

Is the student right? It is moments like this in class that a professor might be caught
off guard and think students do not understand. However, sometimes a seemingly naïve
question from a student uncovers something hidden or previously unknown. The professor
places his hand on his chin and thinks about the question as the students sit quietly.
Finally, he responds, “there is no such thing as the half-derivative of a function”. The class
continues as the professor begins to talk about implicit differentiation, but the question
still bounces around in his head. Does the half derivative of a function really not exist?
Was I truthful with the students? The professor researches the concept and finds an answer
to his questions.
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2 Motivation and mathematics education

The initial motivation of this article is to illustrate dynamically, through modern technol-
ogy, that graphs of fractional derivatives for certain functions are the intermediate graphs
between the function and its first derivative. That is, develop dynamic graphs of the de-
formations in which the reader can visualize the deformations instead of static graphs as
in Larson’s original paper [11]. It may be regarded as analogous to how the non-integer
real numbers fill in the number line between each of the integers. The authors also would
like to express another motivation: to show how Excel can be used to illustrate advanced
mathematics so that students that understand basic differentiation can begin to understand
fractional derivatives of several basic functions. In addition, through Excel undergraduate
students can build on their understanding of calculus to work on capstone type projects
and enhance their learning of mathematics. Arganbright [1] states "the availability of inter-
active and animated visualizations afforded by modern technology can enhance the learning
process significantly..... At the same time, a spreadsheet, such as Microsoft Excel, provides
us with a natural, interactive medium for doing mathematics. Perhaps surprisingly, spread-
sheets are also effective tools for designing mathematical animations." For example, Excel
is used to investigate the Goldbach conjecture by Baker et al [3]. Benacka [4] illustrates
how to use it to produce 3D graphing, Wischniewsky [22] to create movie-like Lissajous
animations, and Baker et al [2] to illustrate recursion.

2.1 Calculus reform

The teaching of calculus went through considerable change through the calculus reform
movement, which stressed that calculus should be taught in a new way. It was one of the
first movements that began to question how calculus had been taught for years in college
and whether calculus was meeting the needs of its audience. The calculus reform movement,
which began in the early 1980’s, did not attempt to challenge the content of calculus, but
to examine the way calculus was being taught [12]. The beginning of the movement was
concerned with changing calculus from being a filter for the further study of math, science,
and engineering, to being a pump for those fields. Long [12] stated that calculus was “the
one class that seemed to be making or breaking students in mathematics and science” (p.3).
The calculus reform movement tried to enhance the way students learned mathematics by
using pedagogical techniques that were radically different from the norm of how calculus
had been taught in the past [12]. One textbook which emerged from this movement was the
Harvard calculus book [8]. Sher[20] stated that "the spreadsheet is the ideal environment
for software that follows the Harvard approach." The Harvard calculus stressed that every
topic should be presented geometrically, numerically, and algebraically, with a fourth —
on the web — being added in recent years. Carefully crafted spreadsheets can be used
to investigate topics geometrically and numerically to reinforce students algebraic work.
Krantz states that “students might discuss and collaborate profitably if (computer-aided)
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material is put before them that will stimulate such interaction” ([9], p916); that will allow
students to make mathematical discoveries when the designed activities lead him or her to
it (op cit).

We seek to stimulate interest in the fractional calculus, and it is our hope that this
article may introduce it to those unacquainted. The spreadsheet environment was found
to be eminently suitable for the graphical illustration of the deformation of some simple
classes of functions to their first derivatives.

3 A brief history of fractional calculus and basic definitions

The fractional derivative–the arbitrary order derivative–has a rich history dating back
to around the time of the invention of calculus [13]. Many famous mathematicians and
scientists have worked on fractional calculus. A useful, modern introduction, giving a
brief historical overview, is that of Watson [21]. The present article considers some basic
definitions of fractional derivatives and goes on to examine in more depth the answer to
the student’s question in terms of polynomials, exponential, sine and cosine functions. The
reasons for including these functions and not others is that the authors want this article
to be one that would draw readers into learning more on their own. Furthermore, the
answers to the student question above yield easily accessible answers through Excel. For
a more in-depth view of both fractional derivatives and fractional integrals see (Miller and
Ross[13], Oldham[14], Post[18]).

The notation Dμ(f) (or simply Dμf ) denotes the μ-th order fractional derivative of
the function f where μ > 0. This notation resembles the operator notation that students
are shown in calculus. One of several fractional derivative definitions, found in the book An
Introduction to Fractional Calculus and Fractional Differential Equations [13] by Miller and
Ross, is derived using the Riemann-Liouville definition of the fractional integral (Miller and
Ross first define the fractional integral and then the fractional derivative). To motivate the
definition for the fractional derivative of a power function xn where n is a positive integer
and x > 0, we look at an observation of Lacroix in 1819. We know that for n ≥ m that:

dm

dxm
(xn) = n(n− 1)(n− 2) . . . (n−m+ 1)xn−m (1)

A general definition of the gamma function for complex z appears in eq (16). For all
positive integers, we have Γ(n) = (n− 1)!. Using this definition we can rewrite eq (1) as

Dm(xn) =
Γ(n+ 1)

Γ(n−m+ 1)
xn−m (2)

Let n be any positive integer, μ > 0, and x ≥ 0. Then

Dμ(xn) =
Γ(n+ 1)

Γ(n− μ+ 1)
xn−μ (Lacroix) (3)
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This definition, observed by Lacroix, is a natural extension of the power rule that
students learn in calculus. A few years after Lacroix’s definition, Fourier defined the
fractional derivative of arbitrary order by using the Fourier transform of a function. Using
modern day notation, he stated

Dμf(x) =
1√
2π

Z ∞

−∞
(iα)μ bf(α)eixαdα

where bf stands for the Fourier transform of the function f . Liouville followed this with
two definitions. For the first definition, Liouville stated that for any function f(x) that
can be extended into a series

P∞
n=0 cne

anx where the real part of an > 0,

Dμf(x) =
∞X
n=0

cna
μ
ne

anx (4)

For the second definition

Dμx−a =
(−1)μΓ(a+ μ)

Γ(a)
x−a−μ (5)

for a > 0 and x > 0. Although up to that time the definitions dealt with fractional
derivatives, Riemann did not state a definition of the fractional derivative of f(x). He
defined the fractional integral of f(x) to be

D−μf(x) =
1

Γ(μ)

Z x

c
(x− t)μ−1f(t) dt+Ψ(x)

where Ψ(x) is called a complementary function and was included in the definition because
of the ambiguity of the lower limit of integration. Sonin stated, cited in [13], in a paper in
1869 that

cD
−μ
x f(x) =

1

Γ(μ)

Z x

c
(x− t)μ−1f(t) dt (6)

where the real part of μ > 0. Four more precise definitions emerged from these early
formulas. The following four definitions stated in [13], respectively those of Riemann,
Liouville, Riemann-Liouville, and Weyl, are consequences of (6) and are:

cD
−μ
x f(x) =

1

Γ(μ)

Z x

c
(x− t)μ−1f(t) dt (Riemann) (7)

where f satisfies f(x) = O(x−1+�) for some � > 0,

−∞D
−μ
x f(x) =

1

Γ(μ)

Z x

−∞
(x− t)μ−1f(t) dt (Liouville) (8)
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where f satisfies f(x) = O(x−μ−�) for � > 0, real part of μ is greater than 0, and x→∞,

0D
−μ
x f(x) =

1

Γ(μ)

Z x

0
(x− t)μ−1f(t) dt (Riemann-Liouville) (9)

where f satisfies f(x) = O(x−μ−�) for � > 0, real part of μ is greater than 0, and x→∞,

xD
−μ
∞ f(x) =

1

Γ(μ)

Z ∞

x
(t− x)μ−1f(t) dt (Weyl) (10)

In order to define the fractional derivative, Miller and Ross [13] first define the fractional
integral. Suppose that the real part of μ is positive and let f be piecewise-continuous on
(0,∞) and integrable on any finite subinterval of [0,∞). Then for t > 0 we denote that f is
in class C if it satisfies the Riemann-Liouville definition of eq (9) above. Given a function
f of class C, ν > 0, and m the smallest integer that is greater than or equal to ν, then the
fractional derivative of f of order ν is defined as

Dνf(x) = Dm[D−μf(x)] (11)

for x > 0 (if it exists), where μ = m− ν.
Oldham and Spanier [14] state two other definitions. The Grűnwald definition states

that

aD
μ
xf(x) = lim

N→∞

⎡⎣(δNx)−μ
Γ(−μ)

N−2X
j=0

Γ(j − μ)

Γ(j + 1)
f(x− jδNx)

⎤⎦ (12)

where δNx = x−a
N and a < x. The other definition [14, page 54], motivated by Cauchy’s

integral formula, is

Dμf(z) =
Γ(μ+ 1)

2πi

Z
C

f(ζ)

(ζ − z)μ+1
dζ (13)

where μ is any real number not equal to a negative integer and thus (ζ − z)−μ−1 does not
have a pole at ζ = z but a branch point. The authors have stated the above definitions to
convey that there are many different ways to define the fractional derivative (and others
we have not stated; for example through Laplace transforms) and so care has to be taken
when working with fractional calculus. As a consequence of (9), we have

0D
−μ
t (tλ) =

Γ(λ+ 1)

Γ(μ+ λ+ 1)
tμ+λ. (14)

where μ > 0, λ > −1, and t > 0.
The observation that Lacroix made in 1819 matches the Riemann-Liouville definition

of the μ-th fractional derivative of the power function xn where x ≥ 0 and n is a positive
integer found in [13]. Lacroix’s definition, eq (3), is derived using eq (9). As a consequence
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of Lacroix’s definition, we can say that given a polynomial p(x) = anx
n+an−1xn−1+ · · ·+

a1x+ a0, where ai is a real number for each i = 1, 2, 3, . . . , n, then

Dμ(p(x)) = Dμ

Ã
nX
i=0

aix
n

!
=

nX
i=0

aiD
μ(xi) =

nX
i=0

ai
Γ(i+ 1)

Γ(i− μ+ 1)
xi−μ (15)

where Γ(i − μ + 1) can be calculated for each i using the general definition. Recall that
the gamma function is a holomorphic function defined everywhere on the complex plane,
except at the negative integers and zero, by

Γ (z) =

Z ∞

0
tz−1e−tdt (16)

It follows by integration by parts that Γ(z + 1) = zΓ(z). In general, the m-th order
derivative of simple functions (power function xa (a > −1), polynomials, exponential,
and sines and cosines) deform to their m + 1-th derivative via the μ-th order fractional
derivatives (m < μ < m+1). We will focus on the case m = 0. Cases for any other integer
m would follow in a very similar way. In fact, a translation back to the case 0 < μ < 1
can be made by letting D0g = Dmf (so D1g = Dm+1f). To illustrate that these simple
functions deform to their derivatives through μ-th fractional derivatives (0 < μ < 1) the
authors use Microsoft Excel 2007.

4 Continuous deformation of a polynomial into its derivative

We will see that if we take a polynomial p(x) then the graphs of Dμ(p(x)) for 0 < μ < 1 are
intermediate graphs in the continuous deformation from the graph of the polynomial p(x)
to the graph of the derivative p0(x). Some brief examples are considered which illustrate
formula (3). These are the constant function f(x) = 1 (easiest example), the monomial
second degree polynomial g(x) = x2 (a fairly easy example), and a trinomial third degree
polynomial h(x) = (x− 1)(x− 2)(x− 3) (a harder example).

Example 1 Using eq (3) for the constant function f(x) = 1, we have the μ-th order
fractional derivative for 0 < μ < 1 is

Dμ(f(x)) = Dμ(1) =
Γ(1)

Γ (1− μ)
x−μ.

The fractional derivative is not equal to zero for all 0 < μ < 1, but we see that this
agrees with the statement that the derivative of a constant is zero from calculus since the
gamma function has a pole at 0. That is, as μ→ 1, Γ(1−μ)→∞ and hence Γ(1)

Γ(1−μ)x
−μ → 0.

Example 2 Using eq (3) for the power function g(x) = x2 then we know g0(x) = 2x and
using the definition above we have

6
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D
1
2 (g(x)) = D

1
2 (x2) =

Γ(2 + 1)

Γ
¡
2− 1

2 + 1
¢x2− 1

2 =
2!

Γ
¡
5
2

¢x 3
2 =

2
3
4

√
π
x
3
2 =

8

3
√
π
x
3
2 (17)

using the fact that Γ(n+1) = n!, Γ(z+1) = zΓ(z), and Γ
¡
1
2

¢
=
√
π. We will look at more

of the continuous deformations in the later sections.

Example 3 Using eq (15) for this next example we will look at the cubic polynomial

p(x) = (x− 1)(x− 2)(x− 3) = x3 − 6x2 + 11x− 6.

So the derivative is p0(x) = 3x2 − 12x+ 11 and the one-third derivative is

D
1
3 (p(x)) = D

1
3 (x3 − 6x2 + 11x− 6)

= D
1
3 (x3)− 6D 1

3 (x2) + 11D
1
3 (x)− 6D 1

3 (1)

=
Γ(4)

Γ
¡
3− 1

3 + 1
¢x3− 1

3 − 6 Γ(3)

Γ
¡
2− 1

3 + 1
¢x2− 1

3

+11
Γ(2)

Γ
¡
1− 1

3 + 1
¢x1−1

3 − 6 Γ(1)

Γ
¡
0− 1

3 + 1
¢

=
Γ(4)

Γ
¡
11
3

¢x 8
3 − 6 Γ(3)

Γ
¡
8
3

¢x 5
3 + 11

Γ(2)

Γ
¡
5
3

¢x 2
3 − 6 Γ(1)

Γ
¡
2
3

¢
=

Γ(4)¡
8
3

¢ ¡
5
3

¢ ¡
2
3

¢
Γ
¡
2
3

¢x 8
3 − 6 Γ(3)¡

5
3

¢ ¡
2
3

¢
Γ
¡
2
3

¢x 5
3 + 11

Γ(2)¡
2
3

¢
Γ
¡
2
3

¢x 2
3 − 6 Γ(1)

Γ
¡
2
3

¢
=

1

Γ
¡
2
3

¢ µ80
41

x
8
3 − 54

5
x
5
3 +

33

2
x
2
3 − 6

¶
These examples illustrate a few of the infinitely many fractional derivatives of a given

function between D0f and D1f . One may obtain a glimpse of the continuum of fractional
derivatives by plotting a discrete number of them between D0f and D1f in Excel. A
striking picture is obtained. Therefore, we see that there is an answer to the naive question
that the student asked about the graph of the half-derivative of a function being half way
between the graph of the function and its derivative, when we look at polynomials. That is,
there is a continuous deformation of a polynomial into its derivative via fractional (arbitrary
order) derivatives between 0 and 1. The graph of the fractional derivative is not always
between the function and derivative, however, there is the continuous deformation. We
will now examine the fractional derivatives of eσx for different values of σ.
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5 Continuous deformation of eσx into its derivative

5.1 Simple case when σ > 0 is a real number

For the exponential function eσx the μ-th order fractional derivative, where μ is any real
number, is

Dμ(eσx) = σμeσx. (18)

This definition is derived using (11) and (8). We will only look at the μ-th order fractional
derivatives for 0 < μ < 1. The examples below illustrate the deformations for 0 < μ < 1.

Example 4 Let f(x) = e2x . Then Dμ(e2x) = 2μe2x. We see that D0(f(x)) = f(x) ≤
Dμ(f(x)) ≤ D1(f(x)).

Example 5 Let f(x) = e
1
3
x. Then Dμ(e

1
3
x) = (13)

μe
1
3
x. We see that D1(f(x)) ≤

Dμ(f(x)) ≤ D0(f(x)).

5.2 Case when σ < 0 is a real number

The calculation in the case of eσx, where σ < 0, is a little more complicated. Let σ = −ρ
where ρ > 0. Then

Dμ(eσx) = Dμ(e−ρx) = (−ρ)μe−ρx = (−1)μρμe−ρx

= ρμ(cos(μπ(2n+ 1)) + i sin(μπ(2n+ 1)))e−ρx.

Note that the imaginary part tends to 0 as μ tends to 1 and the real part tends to −ρe−ρx
as μ tends to 0.

5.3 Case when σ is a complex number

Let f(x) = eσx where σ = ς + iω. Writing σ in polar coordinates, we have σ = ρeiθ.
Therefore

f(x) = exρe
iθ
= exρ(cos θ + i sin θ) = exρ cos θ (cos(xρ sin θ) + i sin(xρ sin θ))

and the real part of f(x) is
exρ cos θ cos(xρ sin θ)

and the imaginary part of f(x) is

exρ cos θ sin(xρ sin θ).

In addition, the derivative

D1(f(x)) = σeσx = (ς + iω)e(ς+iω)x = ρ(cos θ + i sin θ)[ReD0f(x) + i ImD0f(x)].

8
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Therefore the real part of D1f(x) of the above expression is

Re(D1f(x)) = (cos θ cos(xρ sin θ)− sin θ sin(xρ sin θ))ρexρ cos θ

= cos(θ + xρ sin θ)ρexρ cos θ

and similarly the imaginary part is

Im(D1f(x)) = sin(θ + xρ sin θ)ρexρ cos θ

Hence

D1f(x) = cos(θ + xρ sin θ)ρexρ cos θ + i sin(θ + xρ sin θ)ρexρ cos θ

= ei(θ+xρ sin θ)ρexρ cos θ

= ρeiθeixρe
iθ

= σeσx.

The formula for the fractional derivatives of sinx and cosx are included in the cal-
culation of the fractional derivative of eix using the fact that eix = cosx + i sinx. That
is,

Dμ(cosx) + iDμ(sinx)

= Dμ(cosx+ i sinx)

= Dμ(eix)

= iμeix

= eμ ln ieix

= eμ ln e
iπ/2

eix

= eμiπ/2eix

= ei(x+μπ/2)

= cos (x+ μπ/2) + i sin (x+ μπ/2)

From this we conclude thatDμ(cosx) = cos (x+ μπ/2) andDμ(sinx) = sin (x+ μπ/2).
Thus, for this particular function, eix, we have a beautiful illustration of the fractional
derivative as a rotational transformation, or phase shift. When μ takes integer values,
these results reduce to the integer order derivatives from ordinary calculus by application
of the formulas for sine and cosine of sums of angles from elementary trigonometry.

6 Excel models

6.1 Polynomial

We wish to illustrate the transition from function to first derivative via fractional derivatives
in Excel. Consider the polynomial

p (x) = anx
n + an−1x

n−1 + . . .+ a1x+ a0 (19)
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We define

αi =
Γ (i+ 1)

Γ (i− μ+ 1)
(20)

so that
αi
αi−1

=
i

i− μ
(21)

We have then

α1 =
Γ (2)

Γ (2− μ)
=

1!

Γ (2− μ)

α2 =
Γ (3)

Γ (3− μ)
=

2!

(2− μ)Γ (2− μ)

α3 =
Γ (4)

Γ (4− μ)
=

3!

(3− μ) (2− μ)Γ (2− μ)

etc.
This leads to:

αi =
i!

Γ (2− μ)
Yi

j=1
(j − μ)

for 1 ≤ i ≤ n (22)

Now write
βi =

αi
α1

for 1 ≤ i ≤ n

This gives us easily-computable betas, and the troublesome Γ (2− μ) may be factorized
outside of the sum for the fractional derivative. The sequence (βi) satisfies the simple
recurrence

βi =
iβi−1
i− μ

for 2 ≤ i ≤ n (23)

with β1 = 1.
We now have:

Dμ (p (x)) = Dμ

Ã
nX
i=0

aix
i

!
=

nX
i=0

aiD
μ
¡
xi
¢

(24)

=
nX
i=0

ai
Γ (i+ 1)

Γ (i− μ+ 1)
xi−μ

= a0
Γ (1)

Γ (1− μ)
x−μ +

nX
i=1

ai
Γ (i+ 1)

Γ (i− μ+ 1)
xi−μ

=
a0 (1− μ)

Γ (2− μ)
x−μ +

x−μ

Γ (2− μ)

nX
i=1

aiβix
i

=
x−μ

Γ (2− μ)

Ã
a0 (1− μ) +

nX
i=1

aiβix
i

!
(25)
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For the Excel model, we consider polynomials up to degree 5. The model makes use
of the quantity factor. This is the factor outside the large parentheses just above, in eq
(25). To render it in Excel, its logarithm is computed and then the exponential function
invoked. This is done in column H.

We now briefly describe how the spreadsheet computes the quantity in eq (25), given
values of x, μ and the coefficients of the polynomial for n = 5. Horner’s recursive method is
used to evaluate the polynomial. Column B initializes the polynomial sum to a5. Columns
C through F progressively accumulate the sum of eq (25), while column G does the final
multiplication by x and then adds in the term a0 (1− μ) .

Column I performs a simple multiplication to compute the entireDμ (p (x)) as expressed
by the right side of eq (25). The small block of parameters M1:P2 is used for plotting the
results on a ≤ x ≤ b using n + 1 sample points. There is a small issue when x = 0 as
the factor of eq (25) then becomes 0−μ. Thus, we choose a plotting interval (a, b) where
a > 0. The animation is achieved by a small amount of VBA code to drive changes in the
slider-generated value of μ.

6.2 Excel model for the exponential cases

The function we consider is f (x) = eσx = e(ς+iω)x. Sliders (scrollbars) are introduced to
allow the user to easily alter parameters. A slider is included for each of the parameters
μ, ς, ω. In a very real sense, the Excel model is simpler than that for the polynomial case,
since no gamma function is required. However, since we have a complex-valued function
of a real variable, the real and imaginary parts of the fractional derivatives are displayed
on separate charts. By setting either ς or ω to zero, we may observe the transition of pure
exponential or sinusoidal functions respectively via fractional derivatives to their full first
derivatives.

6.3 Excel model for the natural logarithm

For this we need some way to compute the digamma function, i.e., the logarithmic deriv-
ative of the gamma function. The book [14] gives the following formula for the fractional
derivative of the natural logarithm.

Dμ (lnx) =
x−μ

Γ (1− μ)
(lnx− γ − ψ (1− μ)) (26)

where μ > 0.
In eq 26, ψ is the digamma function, defined to be the logarithmic derivative of the

gamma function, i.e.,

ψ (z) =
Γ0 (z)

Γ (z)
(27)
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The number γ = −ψ (1) ' 0.577215 6649 is Euler’s constant. In order to implement eq
26 in Excel, we need a suitable means of computing a good approximation to the digamma
function. A useful online source is [23].

7 Continuous deformation of a function into its antideriva-
tive

Equations 14, 18, and 26 also hold for μ < 0. That is, the fractional derivatives and
fractional integrals for tλ, eσx, and lnx, can be stated concisely using (14), (18), and (26).
This time the deformation is from the function to its antiderivative and the Excel models
for the derivatives can be modified to show these cases by letting −1 < μ < 0. In each of the
models, the user may observe these deformations by using the sliders, or by clicking on the
Animate button. Note that macros need to be enabled in order to use this functionality.

8 Some applications of fractional calculus

Although the fractional calculus had its genesis in the 1600s and has remained dormant
until roughly the 1980s, it has been found to have numerous applications. Abel wrote
about probably the first application of fractional calculus called the tautochrone problem
[6, p279]. This is the problem of determining the shape of the curve such that the time of
descent of a frictionless point mass sliding down the curve under the action of gravity is
independent of the starting point.

We give just a brief overview of applications here and refer the interested reader to the
website of Podlubny [17] for a very useful set of links for fractional calculus resources. It
should not be thought that fractional calculus is merely a mathematical curiosity. Indeed,
Kulish [10] describes application of fractional calculus to the solution of time-dependent,
viscous-diffusion fluid mechanics problems. He states that "the fractional methodology is
validated and shown to be much simpler and more powerful than existing techniques." A
recent paper giving a very good overview of applications in engineering is that of Diethelm
et al [7]. This work contains a very useful bibliography and much summary material that
is difficult to find elsewhere.

Applications of fractional calculus have blossomed in the past 30 years and we make
no attempt to present a complete list of applications. The purpose of such a list is to give
the reader a basic idea of some of the applications so that they can explore the ones of
interest. Spanier and Oldham [14] mention several applications in their book on diffusive
transport in a semi-infinite medium including the following: heat in solids, chemical species
in homogeneous media, vorticity in fluids, and electricity in resistive-capacitive lines. The
book Functional fractional calculus: For system identification and controls, by Das [5]
covers many applications in engineering and science. The work by Sabatier et al [19]
describes a variety of applications in physics and engineering and states “we believe that
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researchers, new or old, would realize that we cannot remain within the boundaries of
integer order calculus, that fractional calculus is indeed a viable mathematical tool that
will accomplish far more than what integer calculus promises, and that fractional calculus
is the calculus for the future.” [19, pp. xii].

9 Conclusion

We hope that we have gone some way to show the power and utility of the (misnamed)
"fractional calculus". There is no doubt that this branch of mathematics will assume a
much greater importance in the years to come. From a mathematics education point of
view, it is also our hope that the Excel models which accompany this article will go some
way to illustrate some of the relationships of the fractional calculus. In particular, we wish
to highlight the following points:

1. That students may gain a renewed respect for the beauty, elegance and power of
mathematics. For one unfamiliar with even its existence, to see that the fractional
calculus is a generalization of standard calculus will often be a source of amazement.
It may be compared to the experience of a student learning about the generalization
of the factorial of a positive integer to the gamma function or the theory of groups
being an abstraction of the overall structure of number systems with an associative
binary operation.

2. The almost limitless vista of mathematics. As a student, to discern that the new
branch of math that you have just learned is a generalization of an existing, familiar
branch, should be a humbling experience: "the more mathematics you know the less
you know", because it begins to dawn on you that there is so much mathematics that
you do not know.

3. The possibilities for research, i.e., that students can work through interesting research
projects to learn more about the history of calculus and fractional calculus in general,
and thus significantly broaden their mathematical experiences.

4. That students can become more mathematically mature as they study more mathe-
matics: learning the generalizations of calculus will in turn help students gain better
understanding of calculus and push their learning beyond what they have learned
before.
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