
Bond University
ePublications@bond

School of Business Discussion Papers Bond Business School

January 1994

Diagnostic testing and sensitivity analysis in SAM
construction
R. P. Byron

Follow this and additional works at: http://epublications.bond.edu.au/discussion_papers

This Discussion Paper is brought to you by the Bond Business School at ePublications@bond. It has been accepted for inclusion in School of Business
Discussion Papers by an authorized administrator of ePublications@bond. For more information, please contact Bond University's Repository
Coordinator.

Recommended Citation
Byron, R. P., "Diagnostic testing and sensitivity analysis in SAM construction" (1994). School of Business Discussion Papers. Paper 51.
http://epublications.bond.edu.au/discussion_papers/51

http://epublications.bond.edu.au?utm_source=epublications.bond.edu.au%2Fdiscussion_papers%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/discussion_papers?utm_source=epublications.bond.edu.au%2Fdiscussion_papers%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/business?utm_source=epublications.bond.edu.au%2Fdiscussion_papers%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/discussion_papers?utm_source=epublications.bond.edu.au%2Fdiscussion_papers%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au
mailto:acass@bond.edu.au
mailto:acass@bond.edu.au


January 1994

R.P. Byron
School of Business
Bond University

University Drive,

DISCUSSION PAPER NO 51

DISCUSSION

PAPERS

BOND UNIVERSITY
School of Business

"Diagnostic Testing and Sensitivity Analysis in
SAM Construction

Gold Coast,QLD,4229

-------------------- AUSTRALIA



January 1994

Diagnostic Testing and Sensitivity Analysis in SAM Construction

R.P.Byron1

Bond University
Queensland

1. Introduction

One of the major issues when constructing a Social Accounting Matrix is that
of checking the initial cell estimates provided by the statistician. Statisticians
typically protest strongly on this issue, maintaining that all relevant information has
been incorporated in the cell estimates and that no further improvement is possible. If
the cell estimates are also expected to satisfy various identities then, one obvious
check (and adjustment) is to use the identities in testing and balancing modes. Such
identities have often been used for balancing - where the adjustment typically depends
on producing new estimates which are as close to the initial estimates as possible
within the confines of a quadratic norm where the weights are the reliabilities of the
initial estimates. Statisticians seem to view such mechanical adjustments with as
much enthusiasm as the Royal Navy first viewed the advent of steam. The adjusted
estimates satisfy adding up conditions which are accounting identities and the burden
of the adjustment falls on the least reliable of the initial estimates.

The dual of constrained estimation is the process of hypothesis testing. The
method of classical statistics is to set up a null hypothesis, embodying certain prior
information, to test the hypothesis and, if it is not rejected, to incorporate that prior
information in the estimation process. The end result is enhanced efficiency. The
process of testing is important because hypotheses are often rejected and theory
refined, as a result. The procedure of estimating and balancing a SAM has been
discussed elsewhere {see Arkhipoff [1969], Stone [1975], Byron [1977] and van der
Ploeg [1982] for examples}. However, the process of testing has had no attention in
the literature, despite the fact that ad hoc testing and refinement procedures are often
used in SAM construction. This paper explores the issue of testing and stems from an
earlier paper by Byron, Crossman, Hurley and Smith [1993] which found that
constrained estimation or balancing when accompanied by "ad hoc" testing was
invaluable in focussing on erroneous initial estimates of cells in a SAM. That
experience suggested it might be worthwhile to develop and formalise statistical tests
for SAM construction.

2. The Statistical Model

A SAM is simply a table with row and column adding-up conditions, the
estimates of the cells (parameters) in the matrix have different levels of reliability, and
the adding up conditions are applicable to the true cell values. The row and column
adding-up conditions are valid restrictions (identities) applicable to the true cell

1 The intellectual interest and financial support of the Queensland Treasury is gratefully
acknowledged.



values; because the adding up restrictions are valid, they can be used to improve the
initial estimates of the cells. If cell estimates are viewed as a random variables with
known probability distributions, then traditional statistical theory is applicable and it
is easily shown that the use of true prior information must result in more efficient
estimates of those cells.

To illustrate, suppose X is a 4x4 SAM, then there are 7 independent row and
column restrictions. Let x=vec(X), where the vectorisation is by column and the 4 row
restrictions are stacked first, followed by the column restrictions, then the restriction
matrix for Gx = h = 0 has one redundant restriction.

1 0 0 0 1 0 0 0 1 0 0 0 -I 0 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 -I 0 0

0 0 1 0 0 0 1 0 0 0 1 0 0 0 -I 0

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 -I
G=

1 1 1 -I 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 -1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 -I 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 -I

SAM balancing is just a procedure to ensure that a set of estimates is produced
which satisfy the adding up restrictions and are as close as possible to the statistician's
initial estimates of the cells in the context of a quadratic norm. If the condition that all
cell members be non-negative is imposed, SAM balancing is identical to the quadratic
transportation problem of operations research.

A

Let X and x be the initial and constrained estimates of the cell members
respectively and let !J. be the true values. The constrained objective function (with the
redundant equation of G deleted) is

_" _" ~

(1) (x-x)' V-I(x-x)+A'(Gx-h)

The first order conditions are
A

(2)

(3)

(4)
since h=O.

x=x- VG'A
_ A

11,= (GVG' )-l(G x-h)
_ A A

X =x- VG' [GVG' r1Gx

If the data generation process is that the initial estimates of X are iid with
A A

x=!J.+e,then G!J.=O,E(e)=O and GE(x)=O.

(5)

(6)

Next,

~ = (!J.+e)- VG' (GVG' )-lG(!J.+e)

E(~) = {I - VG' [GVG' r1G}!J. =!J.
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(7)
so

(8) E(~-~)(~-~)' = V - VG' (GVG' )-IGV

which supports the usual result that the constrained estimator is at least as efficient as

the initial estimator and because the prior information is correct, x is also unbiased.

In the traditional statistical model, the role of hypothesis testing is to test the
validity of the restrictions. Here the restrictions are identities and must hold for
the population parameters. However, what is at issue is whether or not the

A

initial estimates of the cells are unbiased. Suppose x = ~+0 +e where 0 is the bias
in the initial (unconstrained) estimates of~. Henceforth, we refer to this is IEB, initial
estimate bias. Clearly, if the initial estimate is biased, the constrained estimates of
that cell and all linked cells will be biased.

The objective is to isolate IEB by examining the deviations between the
restricted and initial estimates of ~ and setting up a test statistic based on their
deviations using the normality of e. Since

_ A

(9) x-x =-VG' (GVG' )-IG(~+e)

and

(10)

(11)

underHo·

(12)

~ A _ A

E(x-x)(x-x)' = VG (GVG' rIGE{(~+e)(~+e)' }G(GVG' )-IGV
_ A _ A

:E =E(x-x)(x- x)' =VG' (GVG' )-IGV
Furthermore,

_ A

E(x-x) =-VG' (GVG' )-IG(~+ E(e)) =O.
A

since G~ =O. However, if any element of x is biased, such that x =~+ 0 +e then

(13)

_ A

E(x-x) =-VG' (GVG' )-I GO .

Under the null hypothesis (that 0 = 0) the covariance matrix is defined above
and the quadratic form provides a Chi-squared statistic

~A ~A A A

(14) (x-x)' :E-\x- x) =x' G' (GVG' )-IG x - X~n-l

The components of the quadratic form can also be set up as standard normal deviates
by dividing the difference in the constrained and initial estimates by their standard

A

deviations. In other words, the validity of the restrictions G x can be tested
separately, under the assumption that the other restrictions are correct. This is one
way to isolate the source of the bias.

The initial estimates of the elements of X can be used to provide a test of IEB.
If the initial estimates of the elements of X are unbiased, their expected values will
satisfy the row and column adding up conditions. If a single estimate is biased, then it
will not satisfy its row and column adding-up restrictions and any test statistics on
those two restrictions will isolate the offending initial estimate. For example, the
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A

restrictions in the 4x4 case indicate that any bias in XII will be observed in restriction
A

1 and restriction 5"any bias in Xl2 will be observed in restriction 2 and restriction 5,
and so on.

A

The statistical model is X =fl + e , each restriction contains estimates of

different X terms; these initial estimates are statistically independent and since the
A

true values satisfy the adding-up restrictions, if y =G x, then E(y) =0 and
A

Var(y) = GCov(x)G'. Since y is normally distributed, a test statistic based on

-J y - 0 will have a standard normal or a central t distribution, under Ho depending
Var(y)

on whether Var(y) is known or estimated. The key is that any error in an initial
estimate of a cell will show up in two of the test statistics, enabling that cell to be
identified. This is a decomposed Wald test based on the initial estimates.

An "ad hoc" procedure often used is to test if the restricted estimate is within
two standard deviation units of the initial estimate. This procedure uses the initial
estimate of the variance to provide the standard deviation. Using (4) and setting the
'ad hoc' test up as a quadratic form it is immediately seen to be a likelihood raio test
and by substitution becomes a Wald test, which establishes the legitimacy of the
procedure.

(15)
....,A ..... /\ 1\ f\

(x-x)' V-\x-x) = x' G' (GVG' rlGx

An LM test is also easily constructed based on the distribution of the quadratic
1\ 1\

form 'A' L-1 'A under Ho. Substitution yields
1\ f\ 1\ 1\ 1\ 1\

(16) 'A' L-1 'A = 'A' (GVG' )'A= x' G' (GVG' )-lGx
with the usual equivalence between the LM and Wald tests. However, in the classical
context, where the restrictions are at fault, if only one restriction is incorrect, a test
statistic can be set up based on the individual Lagrangians. This has only been done
occasionally in the literature before {see Byron [1972], for an example}. In the
present context, single Lagrangians provide tests which can pinpoint the source of the
bias. The Lagrangians will have a standard normal or central t distribution depending
on whether V is known or estimated.

Any discussion of an estimator is incomplete if its large sample properties are
not included. In the present context this poses a difficulty. The initial estimates are an
informed guess which are assumed to be unbiased. Any errors are independently,
identically (and perhaps normally) distributed. The test statistics are based on linear
combinations of the underlying random variables. As the size of the system increases
the number of random terms increases by the square, whereas the number of
restrictions to be tested increases linearly (n2 versus 2n-1). The Wald and LM tests
can thus be expected to be well behaved as the size of the system increases because
they are linear functions of an increasing number of errors. The Difference test, based

- 1\

on the distribution of (x- x) is also well behaved as the size of the SAM increases
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because, following (4), the test is a linear function of an increasing number of errors.
The upshot is that the three tests should be well behaved as the size of the system
increases; under the null hypothesis they should have the assumed distributions with
their hypothetical rejection rates and under the alternative hypothesis they should
display reasonable power.

_ A

Consider the Lagrangian (3), A= (GVG' )-l(Gx- h). Ifthe null hypothesis is

true G~ = 0 and ~ = (GVG' )-lGe. However, given G is a matrix whose row vectors

consist of unit elements and zeros plim Ge = O. It is easily shown that lim
n

GVG' K h K . . h' f 0 • •--= , were IS a constant matrIX, so t e estimator 0 I\, IS consIstent.
n

To see this, consider the form of GVG' when n=4 and V is diagonal with, for
.convenience of exposition, all diagonal elements equal. Referring to G on page 2

4v 0 0 0 v v v

o 4v 0 0 v v v

o 0 4v 0 v v v

GVG' = 0 0 0 4v -v -v -v

v v v -v 4v 0 0

v v v -v 0 4v 0

v v v -v 0 0 4v

with the notation that the common diagonal elements are v. Since n=4, GVG' when
divided by n cannot increase in magnitude as the size of the SAM increases. Hence A
is consistent.

Given this consistency, it appears that test statistics based on a linear
combination of the random variables (the Wald, LM and Diff procedures) will be
valid whatever the size of the SAM. The large sample properties of test statistics can
be described by the behaviour of their confidence intervals and a consistent estimator
provides a well behaved test [see Bickel and Docksum, ch.6]. The simulations below
offer further evidence of the validity of the test procedures.

3. Empirical Evidence

In what follows an exploratory Monte Carlo experiment is set up with 1000
replications. In the first pass, the estimates of ~ are simulated to vary normally around
the true ~ with a variance consistent with the initial assumptions made. There are 16
parameters to be estimated in the 4x4 case resulting in 8 test statistics corresponding
to the row and column restrictions.

The true values of the cell members and their (true) variances are
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x{i 2 5

"J ['
1 2

:J2 8 15 and v = 2 .01 I

3 9 21 2 I 2 4 .

24 7 22 53 3 1 4 4
A

The first row in Table I provides the N ratio for G x when the null hypothesis is true,
and all the cell estimates are unbiased. The average of these ratios is always close to
zero.

Table 1

Mean Values of Wald Test Statistics
Resulting from Biased Cell Estimates - 1000 Replications

bias nl n2 n3 n4 n5 n6 n7 n8
Ho true

-0.0308 -0.0316 0.0239 0.0096 -0.0159 -0.0679 -0.0101 -0.0148
Ho false
xl 5.7427 -0.0316 0.0239 0.0096 5.7576 -0.0679 -0.0101 -0.0148
x2 -0.0308 3.2317 0.0239 0.0096 2.2935 -0.0679 -0.0101 -0.0148
x3 -0.0308 -0.0316 2.6906 0.0096 2.2935 -0.0679 -0.0101 -0.0148
x4 -0.0308 -0.0316 0.0239 3.4737 -3.4800 -0.0679 -0.0101 -0.0148
x5 1.1239 -0.0316 0.0239 0.0096 -0.0159 2.2377 -0.0101 -0.0148
x6 -0.0308 -0.0152 0.0239 0.0096 -0.0159 -0.0448 -0.0101 -0.0148
x7 -0.0308 -0.0316 1.3573 0.0096 -0.0159 2.2377 -0.0101 -0.0148
x8 -0.0308 -0.0316 0.0239 1.1643 -0.0159 -2.3734 -0.0101 -0.0148
x9 2.2786 -0.0316 0.0239 0.0096 -0.0159 -0.0679 2.6566 -0.0148
xlO -0.0308 1.6001 0.0239 0.0096 -0.0159 -0.0679 1.3233 -0.0148
xli -0.0308 -0.0316 2.6906 0.0096 -0.0159 -0.0679 2.6566 -0.0148
x12 -0.0308 -0.0316 0.0239 4.6284 -0.0159 -0.0679 -5.3434 -0.0148
x13 -4.6496 -0.0316 0.0239 0.0096 -0.0159 -0.0679 -0.0101 4.1164
x14 -0.0308 -4.9265 0.0239 0.0096 -0.0159 -0.0679 -0.0101 3.0836
x15 -0.0308 -0.0316 -5.3094 0.0096 -0.0159 -0.0679 -0.0101 4.1164
x16 -0.0308 -0.0316 0.0239 -4.6092 -0.0159 -0.0679 -0.0101 -4.1460

Next, a bias was introduced, by adding 4xVar(xij) to each cell estimate, one at
a time. For the first cell, this should result in a rejection or high N-value for the first
and fifth restrictions; a bias in the estimate of the second cell (vectorised columnwise)
should result in a rejection of restrictions 2 and 5, and so on. The mean values of the
test statistics on the restrictions with the offending parameter estimates tends to be
much larger than 2, and the pattern supports the previous conjecture. In some cases
the tests do not appear to isolate offending initial estimates, particularly in relation to
x22; however, an examination of the rejection rates associated with the test statistics
will be more meaningful.

The mean results for the LM tests are given in Table 2 and are similar to the
Wald test results in Table I. The well known equality W>LR>LM is observed once
again [see Berndt and Savin(1977)]. Usually the performance of a test can be
improved by increasing the sample size or improved variance estimation; but it is not
obvious how either can be exploited here.
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Table2

Mean Values of LM Test Statistics
Resulting from Biased Cell Estimates - 1000 Replications

11 12 13 14 15 16 17
xl 2.9162 -1.0963 -0.8588 1.0062 3.7092 -0.1389 0.1651
x2 -0.9296 2.4322 -0.5830 0.6515 1.8593 0.4632 0.3008
x3 -0.8697 -0.5772 1.8593 0.5323 1.9778 -0.0503 0.1048
x4 1.0937 0.7266 0.4524 2.2083 -2.6688 0.1722 0.4991
x5 0.6673 0.0407 -0.3886 0.2810 -0.1327 2.1389 0.0925
x6 0.0076 0.0306 -0.0223 -0.0050 -0.0004 0.0742 0.0375
x7 -0.3543 -0.0335 0.7181 0.3487 0.1147 ' 2.1262 0.1011
x8 0.2975 0.0057 0.3421 0.6429 -0.0165 -2,0346 0.1594
x9 1.5363 -0.2561 -0.4942 0.7700 -0.2836 0.0045 2.2507
xlO -0.2776 1.3105 -0.3703 0.5077 0.0458 0.2718 1.2499
xli -0.5068 -0.4045 1.7191 0.9054 0.2111 -0.0208 2,2679
x12 0.7287 0.6179 0.8894 2.2014 -0.0247 0.1536 -3.6728
x13 -5,8402 -1.3438 -1.7067 2,0755 3.2949 1.9027 2.4367
x14 -1.2227 -5.2956 -0.9408 1.1725 1.9067 0.7074 1.5165
x15 -1.7540 -1.0472 -6.1333 1.8047 2.3055 1.9533 2,4022
x16 2.0968 1.3182 1.7186 -5.8627 -2,7080 -1.8107 -3.0860

Table 3 presents the N-ratios for the differences between the constrained and
the initial estimates divided by their standard errors when Ho is false; that is, as a
result of the biases introduced on the 16 coefficients. The approach works, the
diagonal N-values should the large and significant, the off-diagonal elements
insignificant. This is the observed pattern.

Further results on the same 4x4 SAM are given below. Firstly, based on 1000
replications, it is verified in Table 4, that the test statistics are (individually) standard
normal under the null hypothesis. The Kolmogorov-Smirnov test is satisfied at the
5% level in all cases except one, that being one of the difference tests, and even there
the rejection is only marginal. Empirical critical values are calculated for these
distributions based on 2.5% of the distribution under Ho being under either tail.
These critical values are then used to establish the rejection rates under HI in Table 5.
The perturbations are those mentioned previously and as can be seen, when a bias is
introduced into the (1,1) element, the rejection rates on the corresponding row and
column of the Wald and LM tests increase dramatically. The results for the difference
tests (expressed in terms ofthe coefficients rather than the restrictions) also increase
substantially for the offending coefficient and the accompanying row and column.
These elements are highlighted in Table 5.
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Table 3

Standardised Differences resulting from Perturbations
Coefficients

Pert.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 -7.09 -2.02 -2.64 2.77 -1.52 0.83 0.67 -0.75 -2.52 0.88 0.63 -0.85 2.91 -1.11 -0.82 0.99
2 -1.08 -3.79 -1.2 1.26 0.11 -1.84 -0.1 0.07 0.59 -2.22 0.26 -0.37 -0.94 2.41 -0.54 0.63
3 -1.28 -1.08 -3.47 1.49 0.6 0.44 -L06 -0.39 0.73 0.49 -1.63 -0.47 -0.88 -0.59 1.9 0.51
4 1.83 1.54 1.99 -4.69 -0.77 -0.55 -0.43 -1.14 -1.32 -0.93 -0.81 -1.62 L08 0.71 0.49 2.19
5 -0.53 0.09 0.43 -0.38 -2.52 -L85 -1.91 1.99 -0.56 -0.02 0.3 -0.25 0.66 0.02 -0.35 0.26
6 0.0 -0.01 -0.01 0.02 -0.04 -0.04 -0.05 0.05 0.06 0.03 0.04 -0.04 0 0.01 0.02 -0.03
7 0.25 -0.05 -0.77 -0.19 -1.91 -1.79 -2.56 1.94 0.3 0.04 -0.65 -0.3 -0.36 -0.05 0.76 0.33
8 -0.28 0.03 -0.32 -0.6 1.94 1.82 1.86 -2.47 -0.31 -0.05 -0.39 -0.51 0.29 -0.01 0.38 0.62
9 -1.26 0.49 0.66 -0.98 -0.86 0.19 0.31 -0.47 ·3.41 -1.53 -1.66 1.67 1.53 -0.27 -0.45 0.75
10 .25 -1.24 0.25 -0.41 -0.07 -0.99 -0.04 -0.05 -0.9 ~2.04 -0.82 0.82 -0.29 1.29 -0.33 0.49
11 .30 0.22 -1.75 -0.61 0.36 0.31 -1 -0.58 -1.71 -1.42 -3.56 1.57 -0.52 -0.42 1.76 0.88
12 -0.71 -0.54 -0.8 ~2.05 -0.54 -0.47 -0.68 -1.16 3.1 2.57 2.79 -6.22 0.72 0.6 0.93 2.18
13 2.4 -V15 -1.51 1.37 1.52 -0.8 -0.87 0.7 2.63 -0.76 -0.81 0.64 -5.85 -1.36 -1.67 2.05
14 -0.83 3.39 -0.93 0.83 0.04 2.64 -0.13 0.01 -0.36 3.34 -0.59 0.48 -1.23 -5.31 -0.9 U5
15 -0.73 -0.91 3.3 0.63 -0.92 -1.03 1.75 0.91 -0.79 -0.99 2.99 0.86 -1.76 -1.06 -6.09 1.78
16 0.84 1.02 0.9 2.78 0.66 0.83 0.8 1.56 1.37 1.5 1.52 2.06 2.09 1.3 1.76 -5.88

Table 4

Simulation Results under Ho

Wald Test

means and standard deviations
I 2 3 4 5 6 7 8
-0.Q308 -0.0316 0.0239 0.0096 -0.0159 -0.0679 -0.0101 -0.0148
1.0089 1.0268 1.0029 0.9882 1.0001 0.9801 1.0406 1.0293

type I error
44 54 41 52 47 49 58 51

Kolmogorov-Smirnov Test
0.0281 0.0413 0.0187 0.0171 0.0341 0.0361 0.0238 0.0263

critical value at 95% = 0.0430

LMTest
means and standard deviations

I 2 3 4 5 6 7
-0.0022 -0.0206 0.0431 -0.0151 -0.0175 -0.0723 -0.0194
1.0486 1.0092 1.0138 1.0011 1.0158 1.0056 1.0380

type I error
68 54 43 49 55 46 62

Kolmogorov-Smirnov Test
0.0212 0.0404 0.0266 0.0165 0.0203 0.0377 0.0288

Difference Test
means and standard deviations

1 2 3 4 5 6 7 8
0.0216 0.0337 -0.0223 -0.0033 0.0749 0.0757 0.0468 -0.0648
1.0061 1.0344 0.9960 0.9866 0.9681 0.9850 0.9906 0.9914

9 10 11 12 13 14 15 16
0.0210 0.0334 -0.0182 -0.0071 -0.0022 -0.0206 0.0431 -0.0151
1.0116 1.0501 1.0289 1.0255 1.0486 1.0092 1.0138 1.0011

type I error
41 62 44 42 46 46 52 47
53 67 57 54 68 54 43 49

Kolmogorov~Smirnov Test
0.0429 0.0412 0.0273 0.0210 0.0374 0.0483 0.0289 0.0348
0.0259 0.0343 0.0202 0.0261 0.0212 0.0404 0.0266 0.0165
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Table 5
Rejection Rates on Test Statistics resulting from Biased Initial Estimates (HI)

Wald and LM Tests
1 2 3 4 5 6 7 8

11 Wald 1000 49 49 49 999 49 49 49
LM 790 188 161 211 951 62 46

21 Wald 49 870 49 49 626 49 49 49
LM 134 649 112 130 429 92 49

31WaJd 49 49 796 49 626 49 49 49
LM 118 88 502 104 479 54 47

41Wald 49 49 49 940 946 49 49 49
LM 164 104 97 641 744 59 55

12 Wald 208 49 49 49 49 660 49 49
LM 95 50 80 65 51 619 47

22Wald 49 49 49 49 49 50 49 49
LM 50 50 51 49 50 52 50

23 Wald 49 49 298 49 49 660 49 49
LM 56 52 146 73 46 616 47

24 Wald 49 49 49 215 49 642 49 49
LM 56 51 83 129 50 560 46

13 Wald 629 49 49 49 49 49 745 49
LM 319 55 93 153 52 51 494

23 Wald 49 286 49 49 49 49 262 49
LM 57 229 79 98 49 67 165

33 Wald 49 49 796 49 49 49 745 49
LM 67 66 440 188 48 54 506

34 Wald 49 49 49 997 49 49 1000 49
LM 108 86 176 637 52 61 948

14Wald 997 49 49 49 49 49 49 987
LM 999 268 439 597 885 528 578

24 Wald 49 997 49 49 49 49 49 864
LM 205 998 179 250 452 137 225

34 Wald 49 49 999 49 49 49 49 987
LM 368 175 1000 496 619 545 564

44 Wald 49 49 49 996 49 49 49 982
LM 513 230 440 1000 756 466 876

The Difference Test
1 2 3 4 I 2 3 4

11 1000 442 754 824 12 93 51 77 82
360 127 110 104 744 463 448 526
698 148 92 134 88 53 62 56
790 188 161 211 95 50 80 65

21 219 949 242 281 22 50 49 49 49
47 454 50 52 51 50 51 51
88 536 61 62 51 50 50 50
134 649 112 130 50 50 51 49

31 283 150 933 371 32 65 51 132 58
89 73 150 61 523 439 705 509
111 84 361 69 59 50 100 53
118 88 502 104 56 52 146 73

41 502 369 503 999 42 67 50 64 105
126 90 51 18 473 429 459 678
244 131 126 361 64 52 72 74
164 104 97 641 56 51 83 129

13 282 73 109 178 41 694 262 342 322
146 46 63 62 322 133 112 105
920 274 371 408 749 104 126 112
319 55 93 153 999 268 439 597

23 66 187 58 84 42 160 914 172 144
51 172 50 48 46 757 50 49
149 453 127 137 70 896 91 90
57 229 79 98 205 998 179 250

33 66 64 432 111 43 126 122 913 106
62 53 138 79 169 177 416 146
383 241 933 365 128 140 821 148
67 66 440 188 368 175 1000 496

34 124 71 135 565 44 157 187 ISO 824
79 81 81 189 100 127 139 355
857 723 763 1000 271 327 295 536
108 86 176 637 513 230 440 1000
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The results for Tables 6 and 7 are based on a 4x4 SAM with all initial cells
and their variances of the same magnitude (equal to I and 0.2 respectively). The final
row and column variances were then the sum of their rows and columns and the
weighted quadratic form respectively. The story is much the same as observed
previously

Table 6
Simulation Resnlts under Ho: Type I Error

Wald Test
1 2 3 4 5 6 7 8
43 51 45 43 43 47 56 67

Kolmogorov-Smirnov Test
1 2 3 4 5 6 7 8
0.0286 0.0286 0.0160 0.0185 0.0111 0.0240 0.0314 0.0397

K-S Critical Value 0.0430

LMTest
1 2 3 4 5 6 7
46 56 53 48 55 56 52

Kolmogorov-Smirnov Test
0.0299 0.0290 0.0313 0.0303 0.0217 0.0201 0.0471

DiffTest
48 51 46 49 44 53 45 48
40 53 45 55 46 56 53 48

Kolmogorov-Srnirnov Test
0.0263 0.0185 0.0196 0.0164 0.0283 0.0288 0.0140 0.0208
0.0238 0.0269 0.0317 0.0348 0.0299 0.0290 0.0313 0.0303
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Table?
Wald and LM tests: Rejection Rates nnder HI

1 2 3 4 1 2 3 4
l1Wald 320 49 49 49 357 49 49 49

LM 198 54 55 62 242 49 49
12Wald 49 310 49 49 357 49 49 49

LM 70 187 55 62 242 49 49
31 Wald 49 49 339 49 357 49 49 49

LM 70 54 187 62 242 49 49
41 Wald 49 49 49 722 992 49 49 49

LM 91 97 88 180 959 49 49

21 Wald 320 49 49 49 49 297 49 49
LM 198 54 55 62 49 213 49

22Wald 49 310 49 49 49 297 49 49
LM 70 187 55 62 49 213 49

23 Wald 49 49 339 49 49 297 49 49
LM 70 54 187 62 49 213 49

24Wald 49 49 49 722 49 993 49 49
LM 91 97 88 180 50 963 49

13 Wald 320 49 49 49 49 49 295 49
LM 198 54 55 62 49 49 226

23 Wald 49 310 49 49 49 49 295 49
LM 70 187 55 62 49 49 226

33 Wald 49 49 339 49 49 49 295 49
LM 70 54 187 62 49 49 226

43 Wald 49 49 49 722 49 49 992 49
LM 91 97 88 180 50 49 964

14Wald 992 49 49 49 49 49 49 648
LM 997 104 llO 180 242 213 226

24Wald 49 989 49 49 49 49 49 648
LM 120 996 110 180 242 213 226

34Wald 49 49 992 49 49 49 49 648
LM 120 104 994 180 242 213 226

44Wald 49 49 49 1000 49 49 49 1000
LM 532 498 481 1000 959 963 964

Difference Test
1 2 3 4 1 2 3 4

11 482 129 132 220 21 117 55 67 45
153 57 51 49 537 131 141 205
152 49 45 53 152 49 45 53
198 54 55 62 198 54 55 62

21 117 499 132 220 22 53 129 67 45
57 131 51 49 153 450 141 205
64 158 45 53 64 158 45 53
70 187 55 62 70 187 55 62

31 117 129 487 220 23 53 55 132 45
57 57 141 49 153 131 504 205
64 49 164 53 64 49 164 53
70 54 187 62 70 54 187 62

41 815 765 811 997 24 67 69 79 82
85 77 82 ll9 829 805 788 997
90 95 100 97 90 95 100 97
91 97 88 180 91 97 88 180

13 117 55 67 45 14 815 69 79 106
153 57 51 49 829 77 82 104
507 158 164 184 818 95 100 101
198 54 55 62 997 104 110 180

23 53 129 67 45 24 67 765 79 106
57 131 51 49 85 805 82 104
152 528 164 184 90 746 100 101
70 187 55 62 120 996 110 180

33 53 55 132 45 34 67 69 811 106
57 57 141 49 85 77 788 104
152 158 511 184 90 95 778 101
70 54 187 62 120 104 994 180

43 67 69 79 82 44 390 382 398 564
85 77 82 119 427 391 382 547
818 746 778 996 442 341 391 505
91 97 8B__ 180 532 498 481 1000
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The single test results in Tables 6 and 7 suggest that examination of the
Lagrange or Wald test associated with the individual restrictions can enable the
identification of biased initial estimates. However, a more thorough approach would
be to examine rejection rates for the row-column interaction when both tests
simultaneously reject. In Table 8 this is done and the joint rejections turn out to be
quite low. This highlights the point that the actual Wald or LM test should be a X2

test (with two degrees of freedom) on the joint restrictions. The test, of course, is just
A 1\/\ 1\1\ 1\

(16) ,ie. A' L- I A=A' (GVG')A =x' G' (GVG' )-I Gx where the matrix G refers to
only the two restrictions involved.

Table 8
Rejection Rates under HI (4 sector SAM)

Wald, LM and Diff tests
WI W2 W12 L1 L2 L12 Diff

1 320 291 117 193 213 21 464
2 325 291 121 201 213 20 447
3 361 291 129 240 213 24 526
4 712 991 707 166 958 150 994
5 320 338 132 193 265 26 521
6 325 338 143 201 265 31 490
7 361 338 137 240 265 41 559
8 712 995 708 166 978 153 998
9 320 296 115 193 233 26 494
10 325 296 130 201 233 31 472
11 361 296 135 240 233 31 504
12 712 992 708 166 961 152 997
13 994 753 751 0 0 0 995
14 990 753 751 0 0 0 997
15 995 753 749 0 0 0 1000
16 1000 1000 1000 0 0 0 1000

Rejection Rates under HI (10 sector SAM)
Wald. LM and Diff tests

I 135 114 18 116 128 9 287
2 140 114 17 127 128 II 208
3 140 114 7 126 128 6 255
4 130 114 12 137 128 9 209
5 121 114 19 105 128 11 204
6 165 114 17 146 128 9 256
7 146 114 19 130 128 12 223
8 141 114 17 126 128 11 259
9 151 114 22 132 128 13 237
10 704 1000 704 200 1000 200 1000
11 135 141 25 116 135 14 203
12 140 141 21 127 135 16 238

WI and W2 refer to the individual Wald (row and column) tests. W12 refers
to the joint outcome of the two individual tests. The surprising result is that the joint
tests (done individually) reject much less freqently than the Difference test. The W12
and L12 columns refer to the rejection count on both restrictions simultaneously.
(Note the LM test was not calculated for the last 4 restrictions.) In the second half of
the table, the first 12 rows (from XII to X22) illustrate the same point in the context
of a 10 sector SAM. However, the comparisons really are irrelevant unless the
appropriate X2 tests are done.
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In Table 9 the joint test results are presented for the 4 and 10 sector models.
The results for the 10 sector model are not reported under Ho; briefly, there are no
problems with the distributions of the test statistics under Ho for either the 4 or 10
sector models. Only the first three rows are reported for the 4-sector SAM and only
the first row is reported in the 10 sector case. The results are fully representative. The
Difference test (size adjusted) has better power than the Wald test in every situation,
thought the joint test now performs at a similar level to the Difference test. The fact
that the Difference test (size adjusted) correctly rejects more frequently than the Wald
(or LM) tests, in every case, suggests the existence of an underlying inequality
favouring the Difference test. .

Table 9
Wald X2(2) and Difference Tests (4 sector SAM)

1000 replications

Distribution under Ho
Rejection Rate at 5% level: type 1 error

11 12 13 14 21 22 23 24 31 32 33 34
W 50 54 49 54 47 52 49 55 45 53 49 55
D 41 52 46 52 59 48 54 49 47 55 56 48

Kolmogorov Smimov test
11 12 13 14 21 22 23 24 31 32 33 34

W .0272 .0272 .0302 .0185 .0217 .0169 .0291 .0228 .0396 .0191 .0285 .0327 cv(1 sided) ~ .0386
D .0460 .0329 .0252 .0355 .0372 .0263 .0232 .0218 .0332 .0229 .0181 .0296 cv(2 sided) ~ .0430

Distribution under HI: Rejection Rate at 5% level
11 12 13 14 21 22 23 24 31 32 33 34

W 367 349 376 988 373 348 375 985 411 378 390 990
D 515 479 562 996 453 485 471 997 556 490 501 998

Wald X2(2) and Difference Tests (10 sector SAM)
Distribution under HI: Rejection Rate at 5% level

11 12 13 14 15 16 17 18 19 110
WI 163 173 178 166 186 180 185 171 179 1000
D1 249 242 239 197 259 249 206 203 226 1000
W2 152 158 163 159 169 141 177 195 176 1000
D2 182 196 218 179 201 213 221 207 245 1000
W3 195 178 184 163 174 173 176 176 175 1000
D3 244 188 270 240 206 226 217 214 213 1000
W4 167 179 171 177 172 160 175 186 172 1000
D4 227 206 190 262 242 224 224 248 222 1000
W5 173 176 158 170 162 153 158 162 167 1000
D5 206 238 197 216 222 193 215 230 185 1000
W6 157 154 158 179 177 162 168 168 169 1000
D6 214 190 228 211 229 225 218 221 176 1000
W7 159 152 153 154 167 168 160 176 153 1000
D7 206 185 227 192 251 238 197 223 205 1000
W8 182 181 182 160 182 163 202 182 172 1000
D8 261 209 226 240 257 248 254 190 264 1000
W9 148 149 157 146 159 149 152 151 163 1000
D9 179 226 226 273 170 252 187 202 248 1000

A further Monte Carlo study allowed the initial variances (V) to vary randomly
as well as X. The same results were observed as above. Recognising that V has to be
estimated and allowing for randomness in that operation (a variation of about 40%
based on a uniform distribution) made little difference to the results under either the
null or the alternative hypothesis.
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4. Conclusions

The results are a vindication of common sense. The Difference test works well
and does not appear to be adversely affected by the size of the problem. The statistical
theory for the test procedures is straightforward and the tests are properly behaved
under the null and alternative hypotheses. Monte Carlo simulations bear out the
intuition and the creator of a SAM can choose between Wald, LM and Difference tests
in trying to pinpoint initial estimate bias. The simplest procedure, the Difference test,
works well, and its use for diagnostic investigation in data construction should be
encouraged.

The importance of this is a validation of procedures being used in the field and
ammunition to those who have been arguing against those government statistical
offices which are unwilling to conceed that the figures they release are only estimates
and are subject to random errors, as all estimates are. It has implications for national
accounting, trade flow data, input-output analysis as well as SAM construction.
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