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I. Summary 
 
 
     This work covers a substantial mosaic of related concepts in utility theory as applied 

to financial decision-making. It reviews some of the classical notions of Benthamite 

utility and the normative utility paradigm offered by the von Neumann-Morgenstern 

expected utility theory; exploring its major pitfalls before moving into what is postulated 

as an entropic notion of utility. Extrinsic utility is proposed as a cardinally measurable 

quantity; measurable in terms of the expected information content of a set of alternative 

choices. The entropic notion of utility is subsequently used to model the financial 

behavior of individual investors based on their governing risk-return preferences 

involving financial structured products manufactured out of complex, multi-asset 

options. Evolutionary superiority of the Black-Scholes function in dynamic hedging 

scenarios is computationally demonstrated using a haploid genetic algorithm model 

programmed in Borland C.  The work explores, both theoretically and computationally, 

the psycho-cognitive factors governing the financial behavior of individual investors both 

in the presence as well as absence of downside risk and postulates the concepts of 

resolvable and irresolvable risk. A formal theorem of consistent preference is proposed 

and proved. The work also analyzes the utility of an endogenous capital guarantee built 

within a financial structured product. The aspect of investor empowerment is discussed in 

terms of how financial behavior of an investor may be transformed if he or she is allowed 

a choice of one or more assets that may gain entry into the financial structured product. 

Finally there is a concluding section wherein the different facets are placed in their proper 

perspective and a number of interesting future research directions are also proposed. 
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II. Background and Literature Survey 

 

     The assumption of rationality underlies most of the theoretical constructs making up 

modern economics. The basic assumption is that all human beings, when faced with a 

decision problem, act in a rational manner under all circumstances so as to maximize the 

intrinsic utility obtainable from the outcome of such decision. This brings up the problem 

of establishing a reliable quantitative model for the Benthamite notion of intrinsic utility 

i.e. that inherent, sublime quality in a certain good to satisfy a particular human want 

(Bentham, 1789). 

 

     One of the earliest economic thinkers to have formally modeled utility was the Swiss 

mathematician Daniel Bernoulli who, ca 1738 A. D., proposed that the utility of money 

could be best measured by using the logarithm of the number of units of money. He 

hypothesized that the utility of additional sums of money to an individual must be in 

some way inversely proportional to the amount of money the person already has i.e. his 

or her initial wealth. It follows that more initial wealth a person has the less is the utility 

of additional amounts of money.  

 

     However it does not require a high degree of analytical prowess to decide that the 

Bernoullian assumption about diminishing marginal utility of wealth is over-simplistic. 

Empiricists have attacked the rationalist view on utility on the basis that ultimately being 

a subjective, psychological notion, it can differ for different persons over the same 
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situation or same person over different situations. Thus there can be no unique, general 

model of utility that is independent of spatio-temporal and behavioral variables. 

 

     The problem of utility is best illustrated by the problem of self-insurance. Individuals 

faced with the risk of loss due to the occurrence (or non-occurrence) of a chance event 

can either assume the risk themselves or pay an insurance company to assume the risk for 

them. Then the pertinent question is when to assume the risk on one’s own and when to 

purchase an insurance policy? By Bernoulli’s logarithmic measure of utility, the expected 

payoff to the individual without insurance is given as follows: 

 

                             E (X) = p (X) loge X + [1 – p (X)] loge [X – f (X)]                        … (1) 

 

     In the above equation, X is the total pay-off at stake, f (X) is a pre-determined loss 

function and p (X) is the probability of receiving the total pay-off. If the individual 

decides to purchase an insurance policy, the expected pay-off function will be as follows: 

 

                                                  E (X) = loge (X – k)                                                    … (2) 

 

     In the above equation, k is the cost of insurance payable by the insured party to the 

insurance provider. The insurance is cost-effective only if the following inequality holds: 

 

                             loge (X – k) ≥ p (X) loge X + [1 – p (X)] loge [X – f (X)]               … (3) 
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                             i. e.      loge (X – k) ≥ loge [Xp (X) {X – f (X)}{1 – p (X)}]                    … (4) 

 

                             i. e.        k ≤ X [1 – X {p (X) – 1} {X – f (X)}{1 – p (X)}]                          … (5) 

 

     However, it can be intuitively reasoned out that a problem would surface if one is 

dealing with a situation where one of the probable outcomes is a total loss i.e. bankruptcy 

whereby f(X) ≥ X (Kahnemann and Tversky, 1979). The logarithm of zero is negative 

infinity, so f(X) = X could still possibly be explained away as “infinite loss” but there is 

no logically acceptable way to explain the log of a negative number if f(X) > X. 

 

     Speculative trading in derivative securities like stock index futures with a highly 

leveraged position could indeed have unfortunate cases where f(X) > X indicating a finite 

probability of complete financial ruin for the trader but no meaningful mathematical 

expression can model this case under the assumption of logarithmic utility!  

 

     Additionally, a very small probability of “infinite loss” will not always deter 

enterprising profit-seekers. As an illustrative example we may cite the case of playing a 

game whereby a person can walk off with $5 or can drive up a narrow, winding hill-road 

for a mile and claim a prize of $50 at the end of the trail. Of course, no matter how 

skillful a driver the person is, there will always be a finite chance of a fatal accident on 

the half-mile stretch along a dangerous road thereby resulting in an expected pay-off 

function with a positive likelihood of infinite loss.  On the other hand, the expected pay-

off function for the $5 represents a “sure thing” with zero likelihood of loss. But there 
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will definitely be enterprising people who will happily set off in their cars without a 

thought! 

 

     The economics of general insurance works on the basic principle of risk shifting. This 

principle is extendible also to the notion of portfolio insurance. When faced with the 

possibilty of heavy financial losses due to adverse market movements, many if not most 

investors will prefer to pay an insurer a fixed premium in exchange for guaranteeing a 

floor value to his or her investment portolio. For example in case of a protective put 

portfolio insurance strategy, the investor with a long position in a risky asset pays a fixed 

sum up front to the option writer as a premium for the put option on the asset (or a 

representative index in case of a portfolio of assets) which effectively imparts a downside 

limit without appreciably limiting the upside potential. 

 

     For the option buyer (insuree) the decision of an insurance purchase may be 

statistically conceptualized as a decision problem under risk with a pre-ascertained loss 

distribution. To reduce the risk the investor pays the premium and is compensated in case 

loss materializes. If the loss does not materialize i.e. in case of a protective put strategy, 

and if the asset (or portfolio of assets) does not suffer an erosion of value, then the 

insurance premium is taken as a normal business overhead expense provided the 

premium amount is a fair reflection of the expected loss potential. However, in reality the 

situation is not all that simple and not always explicable using the known rules of 

statistical probability theory.  
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     Individuals often have very distorted perceptions of risk – people are prepared to pay 

extraordinarily high amounts for flight insurance (Eisner and Strotz, 1961) but not flood 

insurance even when the latter is offered at a highly subsidized price (Kunreuther et. al., 

1978). Subjective cognitive processes ultimately determine the nature of an investment 

decision (as possibly that of many other critical decisions in life e.g. decision to get 

married, decision to change jobs or decision to undergo a cosmetic surgical procedure). 

Though one may predict with acceptable statistical reliability what decision an average 

human being will take given the circumstances governing the decision environment, no 

individual fits the profile of an average individual all time under all circumstances. Each 

individual will have some individuality – though this may connotate naïvity nevertheless 

it is a basic fact that is often blatantly ignored when we try to force all our predictive 

economic theories to snugly fit the crisp profile of the rational economic person.  

 

     In 1990, a well-known business personality and self-proclaimed meteorologist Iben 

Browning estimated that there was a 50% chance that a severe earthquake would occur 

on the notorious New Madrid fault during a two-day period around December 3, 1990. 

Professional geologists did not agree with this prediction and said that there was no 

scientific reason to believe that the probability of earthquake would vary significantly on 

a day to day basis. Indeed December 3, 1990 passed off without any earthquake. But a 

significant turbulance did occur though it was financial and not geological in nature! As a 

result of Browning’s offhand and somewhat strange doomsday prediction, price and sales 

of earthquake insurance policies in the region sky-rocketed. According to one insurer, 

more than 650,000 State Farm policyholders in the eight states near the fault added an 
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earthquake endorsement to their homeowners’ insurance policies in the two months 

preceding December 3, 1990 – the predicted date of the catastrophe! Now it is not 

difficult to analogically extend this scenario to a situation where, for example, a 

renowned market guru makes a startling prediction and sends the global markets in 

frenzy all because such information temporarily unsettles the rational thinking power of a 

large number of investors and completely distorts their individual risk-return perceptions! 

The other aspect is that with continual and rapid information dissemination, the amount 

of media coverage any single piece of information receives tends to disproportionately 

inflate the importance of that information (Combs and Slovic, 1979). Psycho-cognitive 

biases can indeed affect the desirability of general insurance (extendible to portfolio 

insurance) by systematically distorting the probability or magnitude of worst loss 

(Lichtenstein et. al., 1978). 

 

     There is reasonably well-established theory of classical utility maximization in the 

case of deductible general insurance policy on non-financial assets whereby the basic 

underlying assumption is that cost of insurance is a convex function of the expected 

indemnification.  Such an assumption has been shown to satisfy the sufficiency condition 

for expected utility maximization when individual preferences exhibit risk aversion 

(Meyer and Ormiston, 1999). Under the classical utility maximization appoach, the 

wealth function at the end of the insurance period is given as follows: 

 

                                             ZT = Z0 + M – x + I (x) – C (x = D)                               … (6) 
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     In the above equation, ZT is the terminal wealth at time t = T, Z0 is the initial wealth at 

time t = 0, x is a random loss variable, I(x) is the indemnification function, C(x) is the 

cost of insurance and 0 ≤ D ≤ M is the level of the deductible.  

 

     However, the extent to which parallels may be drawn between ordinary insurance and 

portfolio insurance is limited in the sense that an investment portfolio consists of 

correlated assets which are continuously traded on the floors of organized financial 

markets. While the form of an insurance contract might look familier for portfolio 

insurance – an assured value in return for a price – the mechanism of providing such 

assurance will be quite different. This is because, unlike other tangible assets such as 

houses or cars, when one portfolio of financial assets collapses, virtually all others are 

likely to follow suit thereby making “risk pooling”, the typical method of insurance, 

inappropriate ( Leland and Rubinstein, 1988). 

 

     We have already witnessed some possible pitfalls of the classical expected utility 

maximization approach which governs the risk-return trade-off in some of the most 

celebrated modern portfolio theory models (e.g. Markowitz, 1952; Sharpe, 1964; Ross, 

1976 etc.). Also it may prove somewhat inadequate in measuring the utility emanating 

from complex portfolio insurance structures involving several underlying assets because 

the capital guarantee mechanism that could potentially be embedded in such structured 

products (Braddock, 1997; Fabozzi, 1998) impart an additional dimension to investor 

utility by eliminating downside risk.  
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     Moreover, besides eliminating downside potential, financial structured products also 

allow the investors a greater element of choice through the availability of a number of 

different assets that can enter the structure. Some of the more traditional capital guarantee 

mechanisms like using zero-coupon bonds for example, cannot provide this additional 

utility of choice. A zero-coupon bond capital guarantee scheme involves investment in 

discounted zero-coupon bonds of 㬐% such that (1 – 㬐)% is left for an investment account 

to be invested in high-risk high-return assets e.g. stock index futures. At the end of the 

investment horizon the amount invested in the discounted zero-coupon bond yields the 

original capital while the amount in the investment account provides the scope for an 

additional return. This is a rather simplistic, straightforward approach with very little 

element of choice for the investor. The proportion of (1 – 㬐)% spared for the investment 

account is often inadequate by itself and has to be leveraged. The standard ordinal utility 

formalisms are quite sufficient for assessing the utility of such simplistic capital 

guarantee schemes. However, in order to completely explore the utility forms that may 

evolve out of an endogenously capital guaranteed financial structured product one feels 

the need to go beyond the traditional utility measures and use one which will 

appropriately capture this dimension of choice utility. The ultimate objective of our 

current research is to devise and implement such a utility measure. 

 

     Staying within the confines of the classical normative utility theory (von Neumann 

and Morgenstern, 1947), one may formulate a maximum entropic measure of utilty 

whereby a formal method may be devised to assign utility values under partial 

information about decison maker’s preferences (Abbas, 2002). Abbas proposed a 
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“maximum entropy utility”on the preference behavior of a decison maker by proposing 

an analogy between utiltiy and probability through the notion of a utiltiy density function. 

The core idea was to define a utility density function as the derivative of some utility 

function that is normalized to yield values between zero and unity.  

 

     Abbas’ works modifies earlier works on interpretation of normalized utility functions 

as a probability distribution of some hypothetical game of chance that is independent of 

the problem faced by the decision maker (Castagnoli and LiCalzi, 1996) and rescaling 

probability distributions with the objective of obtaining convenient expressions for utility 

functions (Berhold, 1973). According to Abbas’ formulation, when faced with the 

problem of drawing inference on the basis of partial information, one should use that 

utiltiy curve (or utility vector) whose utiltiy density function (or utility increment vector) 

has maximum entropy subject to the limited known preference constraints.  

 

     There have also been theoretical advances in the esoteric area of econophysics 

whereby mathematical analogs have been proposed and substantiated between utility 

theory and classical thermodynamics in so far as that both neoclassical economics and 

classical thermal physics seek to model natural systems in terms of solutions to 

constrained optimization problems. Both economic and physical state variables come in 

intensive/extensive variable pairs and the one such pair that is receiving much current 

intellectual attention is that of temperature and entropy and its purported economical 

analog – price and utility (Foley, 1994; Candeal et. al., 2001).  
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     However it is the entropic formulation advanced by Abbas that serves as a major 

theoretical cornerstone of our present work.  What we have aimed to accomplish is to 

devise an entropic measure of extrinsic utility of choice; as an additional dimension over 

and above the intrinsic utility which may be measured by the known methods of von 

Neumann-Morgenstern expected utility; to completely account for the utility derived by 

an individual investor from an endogenously capital-guaranteed financial structured 

product enveloping multiple assets.  

 

     The strength of our approach in breaking down total utility into intrinsic and extrinsic 

components is that while one may choose whatever appropriate paradigm to model 

intrinsic utility of a financial structured product, the additional dimension of choice utility 

can always be adequately captured using the analytical framework we’ve proposed here.  
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III. Structure and Methodology 

 

     Alongside exploring existing, cutting-edge developments in the area, this work also 

aims to cover new grounds in behavioral finance modeling. Our approach is primarily 

one of building intuitive logic based on behavioral reasoning, supported in most parts by 

rigorous mathematical exposition or numerical simulation and sensitivity analysis. The 

major part of the work attempts to build on existing, established theoretical models by 

incorporating additional mechanisms within the existing framework. Though based 

extensively on intuitive-cognitive models, our approach is predominantly numerate and 

substantiated by rigorous mathematics rather than being merely normative or speculative.  

 

     The main body of the work is divided into four relevant chapters. The first chapter 

takes up the notion of resolvable risk i.e. systematic investment risk which may be 

attributed to actual market movements as against irresolvable risk which is primarily 

born out of the inherent imprecision associated with the information gleaned out of 

market data such as price, volume, open interest etc. A neutrosophic model of risk 

classification is proposed – neutrosophic logic being a new branch of mathematical logic 

which allows for a three-way generalization of binary fuzzy logic by considering a third, 

neutral state in between the high and low states associated with binary logic circuits.  

 

     A plausible application of the postulated model is proposed in reconciliation of price 

discrepancies in the long-term options market where the only source of resolvable risk is 

the long-term implied volatility. The chapter postulates that inherent imprecision in the 
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way market information is subjectively processed by psycho-cognitive factors governing 

human decision-making actually contributes to the creation of heightened risk appraisals. 

Such heightened notions of perceived risk make investors predisposed in favour of safe 

investments even when pure economic reasoning may not entirely warrant such a choice.  

 

     The second chapter explores one of the simplest of such safe investment strategies 

which are now in vogue – options-based portfolio insurance.  In this chapter we propose 

and mathematically prove a theorem which we have named the “theorem of consistent 

preference” whereby we show that an option buyer will always show consistency in 

revealing his or her preference for a particular strategy within a pre-defined probability 

space. In Appendix (i), we use a Monte Carlo simulation technique to numerically derive 

the utility structures which evolve out of an options-based portfolio insurance strategy. 

 

      We explored utility structures which evolve out of an options-based portfolio 

insurance strategy that uses exchange-traded put options in the second chapter. However 

an alternative scenario could be that instead of buying a real put option in the options 

market, the payoff from a long put and long underlying asset (the combination for 

portfolio insurance) is synthetically replicated by a position in the underlying asset and 

cash using the standard Black-Scholes analytical framework.  The Black-Scholes 

framework is the most efficient framework for engineering this type of synthetic portfolio 

insurance as it has ingrained evolutionary optimality. This is exactly what we have 

computationally demonstrated in the third chapter by using a haploid Genetic Algorithm 
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model programmed in Borland C. The detailed Genetic Algorithm structure and output is 

given in Appendix (ii).  

 

     Having computationally demonstrated the evolutionary optimality of a Black-Scholes 

type expected payoff (utility) maximization function in a dynamic portfolio insurance 

scenario, we proceeded to explore the utility afforded to individual investor profiles by an 

endogenously capital guaranteed financial structured product based on the fundamental 

principle of multi-asset, dynamic hedging strategy in the fourth and last chapter.  

 

     It is in this chapter that we have postulated an Information Theoretic model of utility of 

choice evolving out of multi-asset financial structured products and also the additional 

utility afforded by such financial products due to the element of investor empowerment it 

can bring about by allowing the investor a say in the type of assets that are to be included 

within the product keeping the financial structured product as a whole endogenously 

capital-guaranteed.  

 

     These financial structured products are the type of safe investment strategies which 

are fast catching the fancy of investors on a global scale as they can, besides affording 

protection against untoward downside market movements (i.e. the resolvable risk), also 

provide assurance against the irresolvable risk by creating a sense of protection in the 

mind of the individual investor whereby he or she does not feel exposed to worst-case 

drawdown scenarios or risks of ruin even when, in reality, the actual statistical 

expectation of such ultra-negative scenarios are extremely small. For example, the risk of 
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ruin i.e. the probability of losing the entire investment account in a single trade; is 

something that may be statistically controlled using fractional money management  

techniques and brought down to very low levels. But even if this probability is made to 

become very small (say 0.001; i.e. one-in-a-thousand chance of going bankrupt in a 

subsequent trade), there still remains a finite risk of this extreme event which can assume 

a larger than life image in the eyes of a small-time trader. However, if he or she knows 

that there is a floor below which the size of the investment account cannot fall under any 

circumstances then this can surely impart an additional sense of security and assurance.   

 

     The Information Theoretic (entropic) model of utility of choice we have developed in 

the last chapter is proposed as a seminal contribution to the collective body of knowledge 

that is referred to as Computational Finance. In Appendix (iii) we have used actual 

market data to construct a capital-guaranteed financial structured product and measured 

the investor’s extrinsic utilities. Our model allows for a seamless integration of 

quantitative behavioral finance theory with the binary structure of information science.  

 

     The concluding section attempts to weave the different facets of the work and put 

them in proper perspective besides proposing a few interesting future research directions. 
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1. Neutrosophic Notion of Irresolvable Risk – A Proposed Behavioral 

Explanation of Investor Preference for Downside-protected Investments 

 

     The efficient market hypothesis based primarily on the statistical principle of Bayesian 

inference has been proved to be only a special-case scenario. The generalized financial 

market, modeled as a binary, stochastic system capable of attaining one of two possible 

states (High → 1, Low → 0) with finite probabilities, is shown to reach efficient 

equilibrium with p . M = p if and only if the transition probability matrix M2x2 obeys the 

additionally imposed condition {m11 = m22, m12 = m21}, where mij is an element of M 

(Bhattacharya, 2001).   

 

     Efficient equilibrium is defined as the stationery condition p = [0.50, 0.50] i.e. the 

state in t + 1 is equi-probable between the two possible states given the market vector in 

time t. However, if this restriction {m11 = m22, m12 = m21} is removed, we arrive at 

inefficient equilibrium ρ = [m21/(1-v), m12/(1-v)], where v = m11 – m21 may be derived as 

the eigenvalue of M and ρ is a generalized version of p whereby the elements of the 

market vector are no longer restricted to their efficient equilibrium values. Though this 

proves that the generalized financial market cannot possibly be reduced to pure random 

walk if we do away with the assumption of normality, it does not necessarily rule out the 

possibility of mean reversion as M itself undergoes transition over time implying a 

probable re-establishment of the condition {m11 = m22, m12 = m21} at some point of time 

in the foreseeable future. The temporal drift rate may be viewed as the mean reversion 

parameter k such that kjMt  tends to Mt+j.  In particular, the options market demonstrates 



 23

a perplexing departure from efficiency.  In a Black-Scholes type world, if stock price 

volatility is known a priori, the option prices are completely determined and any 

deviations are quickly arbitraged away. 

 

     Therefore, statistically significant mispricings in the options market are somewhat 

unique as the only non-deterministic variable in option pricing theory is volatility. 

Moreover, given the knowledge of implied volatility on the short-term options, the 

miscalibration in implied volatility on the longer term options seem odd as the parameters 

of the process driving volatility over time can simply be estimated by an AR(1) model 

(Stein, 1993).  

 

     Clearly, the process is not quite as straightforward as a simple parameter estimation 

routine from an autoregressive process. Something does seem to affect the market 

players’ collective pricing of longer term options, which clearly overshadows the 

straightforward considerations of implied volatility on the short-term options. One clear 

reason for inefficiencies to exist is through overreaction of the market players to new 

information. Some inefficiency however may also be attributed to purely random white 

noise unrelated to any coherent market information. If the process driving volatility is 

indeed mean reverting then a low implied volatility on an option with a shorter time to 

expiration will be indicative of a higher implied volatility on an option with a longer time 

to expiration. Again, a high implied volatility on an option with a shorter time to 

expiration will be indicative of a lower implied volatility on an option with a longer time 
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to expiration. However statistical evidence often contradicts this rational expectations 

hypothesis for the implied volatility term structure.  

 

     Denoted by σ’t (t), (where the symbol ’ indicates first derivative) the implied volatility 

at time t of an option expiring at time T is given in a Black-Scholes type world as 

follows: 

 

                    σ’t (t) = j=0∫T [{σM + kj (σt - σM)}/T] dj 

                    σ’t (t) = σM + (kT – 1)(σt - σM)/(T ln k)                                                ... (1.1) 

 

     Here σt evolves according to a continuous-time, first-order Wiener process as follows: 

 

                                        dσt = - β0 (σt - σM) dt + β1σt ε√dt                                     ... (1.2) 

 

     β0 = - ln k, where k is the mean reversion parameter. Viewing this as a mean reverting 

AR(1) process yields the expectation at time t, Et (σt+j), of the instantaneous volatility at 

time t+j, in the required form as it appears under the integral sign in equation (1.1). 

 

     This theorizes that volatility is rationally expected to gravitate geometrically back 

towards its long-term mean level of σM.  That is, when instantaneous volatility is above its 

mean level (σt > σM), the implied volatility on an option should be decreasing as t → T. 

Again, when instantaneous volatility is below the long-term mean, it should be rationally 

expected to be increasing as t → T. That this theorization does not satisfactorily reflect 
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reality is attributable to some kind of combined effect of overreaction of the market 

players to excursions in implied volatility of short-term options and their corresponding 

underreaction to the historical propensity of these excursions to be short-lived. 

 

1.1 A Cognitive Dissonance Model of Behavioral Market Dynamics 

 

     Whenever a group of people starts acting in unison guided by their hearts rather than 

their heads, two things are seen to happen. Their individual suggestibilities decrease 

rapidly while the suggestibility of the group as a whole increases even more rapidly. The 

‘leader’, who may be no more than just the most vociferous agitator, then primarily 

shapes the “groupthink”.  He or she ultimately becomes the focus of group opinion. In 

any financial market, it is the gurus and the experts who often play this role. The crowd 

hangs on their every word and makes them the uncontested Oracles of the marketplace.  

 

     If figures and formulae continue to speak against the prevailing groupthink, this could 

result into a mass cognitive dissonance calling for reinforcing self-rationalizations to be 

strenuously developed to suppress this dissonance. As individual suggestibilities are at a 

lower level compared to the group suggestibility, these self-rationalizations can actually 

further fuel the prevailing groupthink. This groupthink can even crystallize into 

something stronger if there is also a simultaneous “vigilance depression effect” caused by 

a tendency to filter out the dissonance-causing information. (Bem, 1967). The non-linear 

feedback process could in effect be the force which keeps blowing up the bubble until a 
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critical point is reached and the bubble bursts ending the prevailing groupthink with a 

recalibration of the position by the experts. 

 

     That reasoning that we advance has two basic components – a linear feedback process 

containing no looping and a non-linear feedback process fuelled by an “unstable 

rationalization loop”. Our conjecture is that it is due to this unstable rationalization loop 

that perceived true value of an option might be pushed away from its theoretical true 

value. The market price of an option will follow its perceived true value rather than its 

theoretical true value and hence inefficiencies arise.  This does not mean that the market 

as a whole has to be inefficient – the market can very well be close to strong efficiency! 

Only it is the perceived true value that determines the actual price-path meaning that all 

market information (as well as some of the random white noise) could become 

automatically anchored to this perceived true value. This theoretical model would also 

explain why excursions in short-term implied volatilities tend to dominate the historical 

considerations of mean reversion – the perceived term structure simply becomes 

anchored to the prevailing groupthink about the nature of the implied volatility. 

 

     Our conceptual model is based on two primary assumptions: 

 

•  The unstable rationalization loop comes into effect if and only if the group is a 

reasonably well-bonded one i.e. if the initial group suggestibility has already 

attained a certain minimum level as, for example, in cases of strong cartel 

formations and; 
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•  The   unstable rationalization loop stays in force until some critical point in time 

t* is reached in the life of the option.  Obviously t* will tend to be quite close to T 

– the time of expiration. At that critical point any further divergence becomes 

unsustainable due to the extreme pressure exerted by real economic forces ‘gone 

out of sync’ and the gap between perceived and theoretical values closes rapidly.             

 

1.2 The Classical Cognitive Dissonance Paradigm 

 

     Since Leon Festinger presented it well over four decades ago, cognitive dissonance 

theory has continued to generate much interest as well as controversy (Festinger, 1957). 

This was mainly due to the fact that the theory was originally stated in much generalized, 

abstract terms.  As a consequence, it presented possible areas of application covering a 

number of psychological issues involving the interaction of cognitive, motivational, and 

emotional factors.  Festinger’s dissonance theory began by postulating that pairs of 

cognitions (elements of knowledge), given that they are relevant to one another, can 

either be in agreement with each other or otherwise. If they are in agreement they are said 

to be consonant, otherwise they are termed dissonant. The mental condition that forms 

out of a pair of dissonant cognitions is what Festinger calls cognitive dissonance.  

 

     The existence of dissonance, being psychologically uncomfortable, motivates the 

person to reduce the dissonance by a process of filtering out information that is likely to 

increase the dissonance. The greater the degree of the dissonance, the greater is the 
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pressure to reduce dissonance and change a particular cognition.  The likelihood that a 

particular cognition will change is determined by the resistance to change of the 

cognition. Again, resistance to change is based on the responsiveness of the cognition to 

reality and on the extent to which the particular cognition is in line with various other 

cognitions. Resistance to change of cognition depends on the extent of loss or suffering 

that must be endured and the satisfaction or pleasure obtained from the behavior 

(Aronson et. al., 1968). 

 

     We propose the conjecture that cognitive dissonance is one possible (indeed highly 

likely) critical behavioral trigger (Allen and Bhattacharya, 2002) that triggers the 

rationalization loop and subsequently feeds it.  

 

 1.3 Non-linear Feedback Processes Generating a Rationalization Loop  

 

     In a linear autoregressive model of order R, a time series yn is modeled as a linear 

combination of N earlier values in the time series, with an added correction term xn:  

 

                                            yn = xn - Σaj yn-j                                                                                             ... (1.3) 

 

     The autoregressive coefficients aj (j = 1 ... N) are fitted by minimizing the mean-

squared difference between the modeled time series yn and the observed time series yn. 

The minimization process results in a system of linear equations for the coefficients an, 

known as the Yule-Walker equations. Conceptually, the time series yn is considered to be 
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the output of a discrete linear feedback circuit driven by a noise xn, in which delay loops 

of lag j have feedback strength aj. For Gaussian signals, an autoregressive model often 

provides a concise description of the time series yn, and calculation of the coefficients aj 

provides an indirect but highly efficient method of spectral estimation. In a full nonlinear 

autoregressive model, quadratic (or higher-order) terms are added to the linear 

autoregressive model. A constant term is also added, to counteract any net offset due to 

the quadratic terms: 

 

                                              yn = xn - a0 - Σaj yn-j - Σbj, k yn-jyn-k                                            ... (1.4) 

 

     The autoregressive coefficients aj (j = 0 ... N) and bj, k (j, k = 1 ... N) are fit by 

minimizing the mean-squared difference between the modeled time series yn and the 

observed time series yn
*. The minimization process also results in a system of linear 

equations, which are generalizations of the Yule-Walker equations for the linear 

autoregressive model.   

 

     Unfortunately, there is no straightforward method to distinguish linear time series 

models (H0) from non-linear alternatives (HA). The approach generally taken is to test the 

H0 of linearity against a pre-chosen particular non-linear HA. Using the classical theory of 

statistical hypothesis testing, several test statistics have been developed for this purpose. 

They can be classified as Lagrange Multiplier (LM) tests, likelihood ratio (LR) tests and 

Wald (W) tests. The LR test requires estimation of the model parameters both under H0 

and HA , whereas the LM test requires estimation only under H0. Hence in case of a 
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complicated, non-linear HA containing many more parameters as compared to the model 

under H0, the LM test is far more convenient to use. On the other hand, the LM test is 

designed to reveal specific types of non-linearities. The test may also have some power 

against inappropriate alternatives.  However, there may at the same time exist alternative 

non-linear models against which an LM test is not powerful. Thus rejecting H0 on the 

basis of such a test does not permit robust conclusions about the nature of the non-

linearity. One possible solution to this problem is using a W test which estimates the 

model parameters under a well-specified non-linear HA (De Gooijer and Kumar, 1992).  

 

     In a nonlinear feedback process, the time series yn is conceptualized as the output of a 

circuit with nonlinear feedback, driven by a noise xn.  In principle, the coefficients bj, k 

describes dynamical features that are not evident in the power spectrum or related 

measures.  Although the equations for the autoregressive coefficients aj and bj, k are 

linear, the estimates of these parameters are often unstable, essentially because a large 

number of them must be estimated often resulting in significant estimation errors.  This 

means that all linear predictive systems tend to break down once a rationalization loop 

has been generated. As parameters of the volatility driving process, which are used to 

extricate the implied volatility on the longer term options from the implied volatility on 

the short-term ones, are estimated by an AR (1) model, which belongs to the class of 

regression models collectively referred to as the GLIM (General Linear Model), the 

parameter estimates go ‘out of sync’ with those predicted by a theoretical pricing model.  
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 1.4 The Zadeh Argument Revisited  

 
     In the face of non-linear feedback processes generated by dissonant information 

sources, even mathematically sound rule-based reasoning schemes often tend to break 

down. As a pertinent illustration, we take Zadeh’s argument against the well-known 

Dempster’s rule (Zadeh, 1979). Let Θ = {θ1, θ2 … θn} stand for a set of n mutually 

exhaustive, elementary events that cannot be precisely defined and classified making it 

impossible to construct a larger set Θref of disjoint elementary hypotheses.  

 

     The assumption of exhaustiveness is not a strong one because whenever θj, j = 1, 2 … 

n does not constitute an exhaustive set of elementary events, one can always add an extra 

element θ0 such that θj, j = 0, 1 … n describes an exhaustive set. Then, if Θ is considered 

to be a general frame of discernment of the problem of a map m (.): DΘ → [0, 1] may be 

defined associated with a given body of evidence B that can support paradoxical 

information as follows: 

 

                                                   m(φ) = 0                                                                  ... (1.5) 

                                                 ΣA∈DΘ m(A) = 1                                                         ... (1.6) 

  

     Then m (A) is called A’s basic probability number. In line with the Dempster-Shafer 

Theory (Dempster, 1967; Shafer, 1976) the belief and plausibility functions are defined as 

follows: 
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                                              Bel(A) = ΣB∈DΘ, B⊆A m(B)                                            ... (1.7) 

                                              Pl(A) = ΣB∈D
Θ

, B∩A ≠ φ m(B)                                             ... (1.8) 

 

     Now let Bel1(.) and Bel2(.) be two belief functions over the same frame of discernment 

Θ and their corresponding information granules m1(.) and m2(.). Then the combined 

global belief function is obtained as Bel1(.) = Bel1(.) ⊕ Bel2(.) by combining the 

information granules m1(.) and m2(.) as follows for m(φ) = 0 and for C ≠ 0 and C ⊆ Θ; 

 

            [m1 ⊕ m2] (C)  = [ΣA∩B=C m1 (A) m2 (B)] / [1 - ΣA∩B = φ m1 (A) m2 (B)]     ... (1.9) 

 

     The summation notation ΣA∩B=C is necessarily interpreted as the sum over all A, B ⊆ 

Θ such that A ∩ B = C. The orthogonal sum m (.) is considered a basic probability 

assignment if and only if the denominator in equation (5) is non-zero. Otherwise the 

orthogonal sum m (.) does not exist and the bodies of evidences B1 and B2 are said to be 

in full contradiction.  

 

     Such a case can arise when there exists A ⊂ Θ such that Bel1 (A) =1 and Bel2 (Ac) = 1 

which is a problem associated with optimal Bayesian information fusion rule (Dezert, 

2001). Extending Zadeh’s argument to option market anomalies, if we now assume that 

under conditions of asymmetric market information, two market players with 

homogeneous expectations view implied volatility on the long-term options, then one of 

them sees it as either arising out of (A) current excursion in implied volatility on short-

term options with probability 0.99 or out of (C) random white noise with probability of 
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0.01.  The other sees it as either arising out of (B) historical pattern of implied volatility 

on short-run options with probability 0.99 or out of (C) white noise with probability of 

0.01.  

 

     Using Dempster’s rule of combination, the unexpected final conclusion boils down to 

the expression m (C) = [m1 ⊕ m2] (C) = 0.0001/(1 – 0.0099 – 0.0099 – 0.9801) = 1 i.e. 

the determinant of implied volatility on long-run options is white noise with 100% 

certainty!   

 

     To deal with this information fusion problem a new combination rule has been 

proposed under the name of Dezert-Smarandache combination rule of paradoxical 

sources of evidence, which looks for the optimal combination i.e. the basic probability 

assignment denoted as m (.) = m1 (.) ⊕ m2 (.) that maximizes the joint entropy of the two 

information sources (Smarandache 2000; Dezert, 2001).  

 

     The Zadeh illustration originally sought to bring out the fallacy of automated 

reasoning based on the Dempster’s rule and showed that some form of the degree of 

conflict between the sources must be considered before applying the rule. However, in 

the context of financial markets this assumes a great amount of practical significance in 

terms of how it might explain some of the recurrent anomalies in rule-based information 

processing by inter-related market players in the face of apparently conflicting 

knowledge sources. The traditional conflict between the fundamental analysts and the 
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technical analysts over the credibility of their respective knowledge sources is of course 

all too well known!  

1.5 Market Information Reconciliation Based on Neutrosophic Reasoning 

 

     Neutrosophy is a new branch of philosophy that is concerned with neutralities and 

their interaction with various ideational spectra.  Let T, I, F be real subsets of the non-

standard interval ]-0, 1+[. If ε> 0 is an infinitesimal such that for all positive integers n 

and we have |ε| < 1/n, then the non-standard finite numbers 1+ = 1+ε and 0 - = 0-ε form 

the boundaries of the non-standard interval ]-0, 1+[. Statically, T, I, F are subsets while 

dynamically they may be viewed as set-valued vector functions. If a logical proposition is 

said to be t% true in T, i% indeterminate in I and f% false in F then T, I, F are referred to 

as the neutrosophic components. Neutrosophic probability is useful to events that are 

shrouded in a veil of indeterminacy like the actual implied volatility of long-term options. 

As this approach uses a subset-approximation for truth-values, indeterminacy and falsity-

values it provides a better approximation than classical probability to uncertain events. 

 

     The neutrosophic probability approach also makes a distinction between “relative sure 

event”, event that is true only in certain world(s): NP (rse) = 1, and “absolute sure event”, 

event that is true for all possible world(s): NP (ase) =1+. Similar relations can be drawn 

for “relative impossible event” / “absolute impossible event” and “relative indeterminate 

event” / “absolute indeterminate event”. In case where the truth- and falsity-components 

are complimentary i.e. they sum up to unity, and there is no indeterminacy and one is 
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reduced to classical probability. Therefore, neutrosophic probability may be viewed as a 

generalization of classical and imprecise probabilities (Smarandache, 2000). 

 

     When a long-term option priced by the collective action of the market players is 

observed to be deviating from the theoretical price, three possibilities must be considered: 

 

 (1) The theoretical price is obtained by an inadequate pricing model, which means that 

the market price may well be the true price,  

 

 (2) An unstable rationalization loop has taken shape that has pushed the market price of 

the option ‘out of sync’ with its true price, or 

 

 (3) The nature of the deviation is indeterminate and could be due to either (a) or (b) or a 

super-position of both (a) and (b) and/or due to some random white noise. 

 

     However, it is to be noted that in none of these three possible cases are we referring to 

the efficiency or otherwise of the market as a whole. The market can only be as efficient 

as the information it receives to process. We term the systematic risk associated with the 

efficient market as resolvable risk. Therefore, if the information about the true price of 

the option is misinterpreted (perhaps due to an inadequate pricing model), the market 

cannot be expected to process it into something useful just because the market is 

operating at a certain level of efficiency – after all, financial markets can’t be expected to 

pull jack-rabbits out of empty hats!  
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     The perceived risk resulting from the imprecision associated with how human psycho-

cognitive factors subjectively interpret information and use the processed information in 

decision-making is what we term as irresolvable risk.  

 

     With T, I, F as the neutrosophic components, let us now define the following events: 

 

H = {p: p is the true option price determined by the theoretical pricing model}; and 

 

M = {p: p is the true option price determined by the prevailing market price}          ... (1.10) 

                                      

     Then there is a t% chance that the event (H ∩ Mc) is true, or corollarily, the 

corresponding complimentary event (Hc ∩ M) is untrue, there is a f% chance that the 

event (Mc ∩ H) is untrue, or corollarily, the complimentary event (M ∩ Hc) is true and 

there is a i% chance that neither (H ∩ Mc) nor (M ∩ Hc) is true/untrue; i.e. the 

determinant of the true market price is indeterminate. This would fit in neatly with 

possibility (c) enumerated above – that the nature of the deviation could be due to either 

(a) or (b) or a super-position of both (a) and (b) and/or due to some random white noise.  

 

     Illustratively, a set of AR(1) models used to extract the mean reversion parameter 

driving the volatility process over time have coefficients of determination in the range say 

between 50%-70%, then we can say that t varies in the set T (50% - 70%).  If the 

subjective probability assessments of well-informed market players about the weight of 

the current excursions in implied volatility on short-term options lie in the range say 
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between 40%-60%, then f varies in the set F (40% - 60%). Then unexplained variation in 

the temporal volatility driving process together with the subjective assessment by the 

market players will make the event indeterminate by either 30% or 40%. Then the 

neutrosophic probability of the true price of the option being determined by the 

theoretical pricing model is NP (H ∩ Mc) = [(50 – 70), (40 – 60), {30, 40}].  

 

1.6 Implication of a Neutrosophic Interpretation of Financial Behavior 

 
     Finally, in terms of our behavioral conceptualization of the market anomaly primarily 

as manifestation of mass cognitive dissonance, the joint neutrosophic probability denoted 

by NP (H ∩ Mc) will also be indicative of the extent to which an unstable rationalization 

loop has formed out of such mass cognitive dissonance that is causing the market price to 

deviate from the true price of the option. Obviously increasing strength of the non-linear 

feedback process fuelling the rationalization loop will tend to increase this deviation.  

     As human psychology; and consequently a lot of subjectivity; is involved in the 

process of determining what drives the market prices, neutrosophic reasoning will tend to 

reconcile market information much more realistically than classical probability theory. 

Neutrosophic reasoning approach will also be an improvement over rule-based reasoning 

possibly avoiding pitfalls like that brought out by Zadeh’s argument. This has particularly 

significant implications for the vast majority of market players who rely on signals 

generated by some automated trading system following simple rule-based logic.   

     However, the fact that there is inherent subjectivity in processing the price information 

coming out of financial markets, given that the way a particular piece of information is 
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subjectively interpreted by an individual investor may not be the globally correct 

interpretation, there is always the matter of irresolvable risk that will tend to pre-dispose 

the investor in favour of some safe investment alternative that offers some protection 

against both resolvable as well as irresolvable risk. This highlights the rapidly increasing 

importance and popularity of safe investment options that are based on some form of 

insurance i.e. an investment mechanism where the investor has some kind of in-built 

downside protection against adverse price movements resulting from erroneous 

interpretation of market information.  Such portfolio insurance strategies offer protection 

against all possible downsides – whether resulting out of resolvable or irresolvable risk 

factors and therefore make the investors feel at ease and confident about their decision-

making.  We look at one such strategy called a protective put strategy in the next chapter. 
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2. Theorem of Consistent Preference and the Utility Structures 

Underlying a Simple Portfolio Insurance Strategy 

 

     It is well known that the possibility to lend or borrow money at a risk-free rate widens 

the range of investment options for an individual investor. The inclusion of the risk-free 

asset makes it possible for the investor to select a portfolio that dominates any other 

portfolio made up of only risky securities. This implies that an individual investor will be 

able to attain a higher indifference curve than would be possible in the absence of the 

risk-free asset. The risk-free asset makes it possible to separate the investor’s decision-

making process into two distinct phases – identifying the market portfolio and funds 

allocation. The market portfolio is the portfolio of risky assets that includes each and 

every available risky security. As all investors who hold any risky assets at all will 

choose to hold the market portfolio, this choice is independent of an individual investor’s 

utility preferences (Tobin, 1958). Extending the argument to a case where the investor 

wants to have a floor to his or investment below which he or she would not want his or 

her portfolio value to fall then a natural choice for this floor would be the risk-free rate. 

 

     While theoretical finance literature is replete with models of portfolio choice under 

risk, there is surprisingly little work with respect to models of investor behavior where 

acquiring portfolio insurance through the usage of financial derivatives could reduce or 

remove investment risk. 
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     In this section we take a look at a simple portfolio insurance strategy using a 

protective put and in Appendix (i), computationally derive the investor’s governing utility 

structures underlying such a strategy under alternative market scenarios. Investor utility is 

deemed to increase with an increase in the excess equity generated by the portfolio 

insurance strategy over a simple investment strategy without any insurance. 

 

     Three alternative market scenarios (probability spaces) have been explored – “Down”, 

“Neutral” and “Up”, categorized according to whether the price of the underlying 

security is most likely to go down, stay unchanged or go up. The methodology used is 

computational, primarily based on simulation and numerical extrapolation. We have used 

the Arrow-Pratt measure of risk aversion in order to determine how individual investors 

react towards risk under the different market scenarios with varying risk assessments. 

 

     While countless research papers have been written and published on the mathematics 

of option pricing formulation, surprisingly little work has been done in the area of 

exploring the exact nature of investor utility structures that underlie investment in 

derivative financial assets. This is an area we deem to be of tremendous interest both 

from the point of view of mainstream financial economics as well as from the point of 

view of a more recent and more esoteric perspective of behavioral economics. 

 

2.1 Brief Review of Financial Derivatives 

 

     Basically, a derivative financial asset is a legal contract between two parties – a buyer 

and a seller, whereby the former receives a rightful claim on an underlying asset while 



 41

the latter has the corresponding liability of making good that claim, in exchange for a 

mutually agreed consideration. While many derivative securities are traded on the floors 

of exchanges just like ordinary securities, some derivatives are not exchange-traded at all. 

These are called OTC (Over-the-Counter) derivatives, which are contracts not traded on 

organized exchanges but rather negotiated privately between parties and are especially 

tailor-made to suit the nature of the underlying assets and the pay-offs desired therefrom.  

 

 Forward Contract 

     A contract to buy or sell a specified amount of a designated commodity, currency, 

security, or financial instrument at a known date in the future and at a price set at the time 

the contract is made. Forward contracts are negotiated between the contracting parties 

and are not traded on organized exchanges. 

 

Futures Contract 

     Quite similar to a forwards contract – this is a contract to buy or sell a specified 

amount of a designated commodity, currency, security, or financial instrument at a 

known date in the future and at a price set at the time the contract is made. What 

primarily distinguishes forward contracts from futures contracts is that the latter are 

traded on organized exchanges and are thus standardized. These contracts are marked to 

market daily, with profits and losses settled in cash at the end of the trading day. 

 

Swap Contract 

     This is a private contract between two parties to exchange cash flows in the future 

according to some prearranged formula. The most common type of swap is the "plain 
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vanilla" interest rate swap, in which the first party agrees to pay the second party cash 

flows equal to interest at a predetermined fixed rate on a notional principal. The second 

party agrees to pay the first party cash flows equal to interest at a floating rate on the 

same notional principal. Both payment streams are denominated in the same currency. 

Another common type of swap is the currency swap. This contract calls for the counter-

parties to exchange specific amounts of two different currencies at the outset, which are 

repaid over time according to a prearranged formula that reflects amortization and 

interest payments. 

 

Options Contract 

     A contract that gives its owner the right, but not the obligation, to buy or sell a 

specified asset at a stipulated price, called the strike price. Contracts that give owners the 

right to buy are referred to as call options and contracts that give the owner the right to 

sell are called put options. Options include both standardized products that trade on 

organized exchanges and customized contracts between private parties. 

  

     The simplest option contracts (also called plain vanilla options) are of two basic types 

– call and put. The call option is a right to buy (or call up) some underlying asset at or 

within a specific future date for a specific price called the strike price. The put option is a 

right to sell (or put through) some underlying asset at or within a specified date – again 

for a pre-determined strike price. The options come with no obligations attached – it is 

totally the discretion of the option holder to decide whether or not to exercise the same. 
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     The pay-off function (from an option buyer’s viewpoint) emanating from a call option 

is given as Pcall = Max [(ST – X), 0]. Here, ST is the price of the underlying asset on 

maturity and X is the strike price of the option. Similarly, for a put option, the pay-off 

function is given as Pput = Max [(X – ST), 0]. The implicit assumption in this case is that 

the options can only be exercised on the maturity date and not earlier. Such options are 

called European options. If the holder of an option contract is allowed to exercise the 

same any time on or before the day of maturity, it is termed an American option. A third, 

not-so-common category is one where the holder can exercise the option only on 

specified dates prior to its maturity. These are termed Bermudan options. The options we 

refer to in this paper will all be European type only but methodological extensions are 

possible to extend our analysis to also include American or even Bermudan options. 

 

     In our present analysis we will be restricted exclusively to portfolio insurance strategy 

using a long position in put options and explore the utility structures derivable therefrom. 

 

2.2 Investor’s Utility Structures Governing the Purchase of Plain Vanilla Option Contracts 

  

     Let us assume that an underlying asset priced at S at time t will go up or down by ∆s 

or stay unchanged at time T either with probabilities pU (u), pU (d) and pU (n) respectively 

contingent upon the occurrence of event U, or with probabilities pD (u), pD (d) and pD (n) 

respectively contingent upon the occurrence of event D, or with probabilities pN (u), pN 

(d) and pN (n) respectively contingent upon the occurrence of event N, in the time period 

(T – t).  This, by the way, is comparable to the analytical framework that is exploited in 

option pricing using the numerical method of trinomial trees, which is a common 
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numerical algorithm used in the pricing of the non-European options where it is difficult 

to find a closed-form pricing formula akin to the famous Black-Scholes pricing equation.  

  

2.3 Theorem of Consistent Preference  

 

     Let pU, pD and pN be the three probability distributions contingent upon events U, D 

and N respectively where pU(u) = Maxi pU(i),  pN(n) = Maxi pN(i) and pD(d) = Maxi pD(i), 

for respective instances i ∈ (u, n, d). Then we have a consistent preference relation for a 

call buyer such that pU is strictly preferred to pN and pN is strictly preferred to pD and a 

corresponding consistent preference relation for a put buyer such that pD is strictly 

preferred to pN and pN is strictly preferred to pU (Khoshnevisan, Bhattacharya and 

Smarandache, 2003). The theorem of consistent preference naturally implies that an 

protective put portfolio insurance strategy would be preferable when the market is 

expected to go down rather than when it is expected to either go up or retain status quo.  

 

Proof:  

 

Case I:  Investor buys a call option for $C maturing at time T having a strike price of $X 

on the underlying asset. We modify the call pay-off function slightly such that we now 

have the pay-off function Ycall as: Ycall = Max (ST – X – C, – C). 
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Event U:  

 EU (Call) = [(S + e-r (T-t) ∆s) pU (u) + (S – e-r (T-t) ∆s) pU (d) + S pU (n)] – C – Xe-r (T-t)  

                 = [S + e-r (T-t) ∆s {pU (u) – pU (d)}] – C – Xe-r (T-t) … since pU (u) > pU (d) 

 Therefore, E (Ycall) = Max [S + e-r (T-t) {∆s (pU (u) – pU (d)) – X} – C, – C]               … (I) 

 

Event D:   

ED (Call) = [(S + e-r (T-t) ∆s) pD (u) + (S – e-r (T-t) ∆s) pD (d) + S pD (n)] – C – Xe-r (T-t)  

                = [S + e-r (T-t) ∆s {pD (u) – pD (d)}] – C – Xe-r (T-t) … since pD (u) < pD (d) 

Therefore, E (Ycall) = Max [S – e-r (T-t) {∆s (pD (d) – pD (u)) + X} – C, – C]                … (II) 

                                

Event N:  

 EN (Call) = [(S + e-r (T-t) ∆s) pN (u) + (S – e-r (T-t) ∆s) pN (d) + S pN (n)] – C – Xe-r (T-t)  

                 = [S + e-r (T-t) ∆s {pN (u) – pN (d)}] – C – Xe-r (T-t)  

                 = S – C – Xe-r (T-t) … since pN (u) = pN (d) 

Therefore, E (Ycall) = Max [S –Xe-r (T-t) – C, – C]                                                       … (III) 

 

Case II:  Investor buys a put option for $P maturing at time T having a strike price of $X 

on the underlying asset. Again we modify the pay-off function such that we now have the 

pay-off function Yput as: Yput = Max (X – ST – P, – P).  

 

Event U:   

EU (Put) = Xe-r (T-t) – [{(S + e-r (T-t) ∆s) pU (u) + (S – e-r (T-t) ∆s) pU (d) + S pU (n)} + P]                                

               = Xe-r (T-t) – [S + e-r (T-t) ∆s {pU (u) – pU (d)} + P] 
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               = Xe-r (T-t) – [S + e-r (T-t) ∆s {pU (u) – pU (d)} + (C + Xe-r (T-t) – S)] … put-call parity 

               = – e-r (T-t) ∆s {pU (u) – pU (d)} – C                                                 

 Therefore, E (Yput) = Max [– e-r (T-t) ∆s {pU (u) – pU (d)} – C, – P]  

                                = Max [– e-r (T-t) ∆s {pU (u) – pU (d)} – C, – (C + Xe-r (T-t) – S)]    … (IV) 

 

Event D:   

ED (Put) = Xe-r (T-t) – [{(S + e-r (T-t) ∆s) pD (u) + (S – e-r (T-t) ∆s) pD (d) + S pD (n)} + P]  

               = Xe-r (T-t) – [S + e-r (T-t) ∆s {pD (u) – pD (d)} + P]  

               = Xe-r (T-t) – [S + e-r (T-t) ∆s {pU (u) – pU (d)} + (C + Xe-r (T-t) – S)] … put-call parity 

               = e-r (T-t) ∆s {pD (d) – pD (u)} – C 

Therefore, E (Yput) = Max [e-r (T-t) ∆s {pD (d) – pD (u)} – C, – P]  

                               = Max [e-r (T-t) ∆s {pD (d) – pD (u)} – C, – (C + Xe-r (T-t) – S)]          … (V) 

 

Event N:   

EN (Put) = Xe-r (T-t) – [{(S + e-r (T-t) ∆s) pN (u) + (S – e-r (T-t) ∆s) pN (d) + S pN (n)} + P]  

              = Xe-r (T-t) – [S + e-r (T-t) ∆s {pN (u) – pN (d)} + P] 

              = Xe-r (T-t) – (S + P)  

              = (Xe-r (T-t) – S) – {C + (Xe-r (T-t) – S)} … put-call parity 

              = – C 

    Therefore, E (Yput) = Max [– C, – P]  

                                   = Max [–C, – (C + Xe-r (T-t) – S)]                                                    … (VI) 
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     From equations (IV), (V) and (VI) we see that EU (Put) < EN (Put) < ED (Put) and 

hence it is proved why we have the consistent preference relation PD is strictly preferred 

to PN and PN is strictly preferred to PU from a put buyer’s point of view. The call buyer’s 

consistent preference relation is also explainable likewise.   

          Proved 

 

     We have computationally derived the associated utility structures using a Monte Carlo 

discrete-event simulation approach to estimate the change in investor utility (measured in 

terms of expected equity) following a particular investment strategy under each of the 

aforementioned event spaces D, N and U and the results are provided in Appendix (i).     

 

     The portfolio insurance strategy we have encountered here uses an exchange-traded 

vanilla put option. However, the same form of insurance can also be engineered by 

synthetically replicating the pay-off from a long put option and a long underlying asset by 

taking a long position in the underlying asset and long position in a risk-free asset such 

that a proportion equivalent to 㥀c of the total funds is invested in the underlying asset and 

the rest in the risk-free one. Here 㥀c is the delta of a call option on the same underlying 

asset i.e. if the price of the underlying asset moves marginally, the price of the call option 

moves by 㥀c units. This is known in investment parlance as dynamic delta-hedging and 

has been proven to be a very effective portfolio insurance strategy except in case of a 

crash situation.  This dynamic-hedging model can be extended to a multi-asset scenario 

too, where a whole portfolio consisting of several underlying assets needs to be protected 

against adverse market movements, by extending the standard Black-Scholes argument to 
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a multi-dimensional probability space.  This dynamic hedging model will work 

efficiently every time because the Black-Scholes type of expected utility function has an 

inherent biological superiority over other utility forms and this is what we set out to 

computationally explore in our next chapter.  
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3. Exploring the Biological Basis of Utility Functions – Computational 

Implementation of a Genetic Algorithm Scheme to Illustrate the 

Efficiency of Black-Scholes Delta Hedging Using Multi-asset Options 

 

3.1 Primer on Structured Products based on Multi-asset Options 

 

     For our purpose, a financial structured product is assumed to take the form of a 

complex, multi-asset option whereby an investor receives a terminal payoff that is tied to 

the price or performance of any one of the several assets enveloped within the structure. 

The premium to be paid by the investor is determined by means of a pricing formula akin 

to the Black-Scholes expected-payoff formulation but in a multi-dimensional form. 

However, the actual utility from the financial structured product at the end of the 

investment horizon depends on how well the assets within the structure have been 

‘managed’ during the lock-up period to adapt to the changing asset market conditions. 

 

     It is apparent that the risk-adjusted returns to asset allocation increase as correlation 

between alternative assets decrease.  However this is not strictly true in a mathematical 

sense. For example a financial structured product whose payoff is equivalent to that of a 

two-asset, best-of option (or an exchange option) payoff given by Max[S1 - S2, 0], for the 

case of equal volatility, drift and correlation – i.e. exchangeability; computational results 

suggest that the information ratio (i.e. mean/standard deviation) of the returns is invariant 

to the degree of correlation. A formal proof for the two-asset case has been advanced 

(Martin, 2001) but there is no formal proof for this conjecture as yet for the n-assets case. 
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     If the financial structured product is actually a multi-asset, best-of option whose 

payoff is linked to the best-performing asset enveloped within that structure, then an 

endogenous capital-guarantee may be built within this structure whereby the payoff from 

this structure is replicated using a portfolio consisting of investments in the various assets 

within the structure along with an investment in a risk-free asset like a commercial bank 

fixed-deposit or a government treasury bill. The proportion of invested funds in each of 

the risky assets as well as the risk-free asset is determined according to an allocation 

formula, which is re-calculated periodically so as to ensure a minimum-error replication.  

 

      Let a financial structured product be made up of an envelope of J different assets such 

that the investor has the right to claim the return on the best-performing asset out of that 

envelope after a stipulated lock-in period. Then, if one of the J assets in the envelope is 

the risk-free asset then the investor is assured of a minimum return equal to the risk-free 

rate i on his invested capital at the termination of the stipulated lock-in period.  This 

effectively means that his or her investment becomes endogenously capital-guaranteed as 

the terminal wealth, even at its worst, cannot be lower in value to the initial wealth plus 

the return earned on the risk-free asset minus a finite cost of portfolio insurance, which is 

paid as the premium to the option writer. 

 

     Then the expected present value of the terminal option payoff is obtained as follows: 

 

                            Ê (r) t=T = Max [w, Max j {e-it E (rj) t=T}], j = 1, 2 … J – 1          ... (3.1) 



 51

 

     In the above equation, i is the rate of return on the risk-free asset and T is the length of 

the investment horizon in continuous time and w is the initial wealth invested i.e. 

ignoring insurance cost, if the risk-free asset outperforms all other assets then we get: 

 

                            Ê (r) t=T = weiT/eiT = w                                                                   ... (3.2) 

 

     Now what is the probability of each of the (J – 1) risky assets performing worse than 

the risk-free asset? Even if we assume that there are some cross-correlations present 

among the (J – 1) risky assets, given the statistical nature of the risk-return trade-off, the 

joint probability of all these assets performing worse than the risk-free asset will be very 

low over even moderately long investment horizons.  And this probability will keep 

diminishing with every additional risky asset added to the envelope. Thus this probability 

can become quite negligible if we consider sufficiently large values of n.  However, in 

this paper, we have taken J = 3 mainly for computational simplicity, as closed-form 

pricing formulations become extremely difficult to obtain for J > 3. (Johnson, 1986) 

 

     For an option writer who is looking to hedge his or her position, the expected utility 

maximization criterion will require the tracking error to be at a minimum at each point of 

rebalancing, where the tracking error is the difference between the expected payoff on the 

best-of option and the replicating portfolio value at that point. Then, given a necessarily 

biological basis of the evolution of utility forms (Robson, 1968; Becker, 1976), a haploid 

genetic algorithm model, which, as a matter of fact, can be shown to be statistically 
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equivalent to multiple multi-armed bandit processes, should show satisfactory 

convergence with the Black-Scholes type expected utility solution to the problem 

(Robson, 2001).  

 

     This is exactly what we have attempted to demonstrate in our present chapter. A 

Black-Scholes type expected utility maximization function is what is anticipated to 

gradually evolve out of the future generations as the largely predominant genotype.  

 

3.2 A Genetic Algorithm Model for the Financial structured product Problem 

 

A. The set-up 

 

     At each point of re-balancing, the tracking error has to be minimized if the difference 

between the expected option payoff and the replicating portfolio value is to be 

minimized. The more significant this difference, the more will be the cost of re-balancing 

associated with correcting the tracking error; and as these costs accumulate; the less will 

be the ultimate utility of the hedge to the option writer at the end of the lock-in period. 

Then the cumulative tracking error over the lock-in period is given as: 

 

                                                     Ξ = Σt |E (r) t – vt|                                                  ... (3.3) 
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     Here E (r) t is the expected best-of option payoff at time-point t and vt is the replicating 

portfolio value at that point of time.  Then the replicating portfolio value at time t is 

obtained as the following linear form: 

 

                                                 vt = (p0) t eit + Σ j {(pj) t (Sj) t}, j = 1, 2 … J – 1         ... (3.4) 

 

     Here (Sj) t is the realized return on asset j at time-point t and p1, p2 … pJ-1 are the 

respective allocation proportions of investment funds among the J – 1 risky assets at 

time-point t and (p0) t is the allocation for the risk-free asset at time-point t. Of course: 

                                       

                                               (p0) t = 1 – Σj (pj) t                                                                                  ... (3.5) 

 

      It is the portfolio weights i.e. the p0 and pj values that are of critical importance in 

determining the size of the tracking error. The correct selection of these portfolio weights 

will ensure that the replicating portfolio accurately tracks the option. 

 

      Then, over a few successive generations, the predominant genotype will evolve as the 

one that best meets the fitness criterion based on the magnitude of the tracking error. The 

option value on the best of two risky assets plus one risk-free asset is derived according 

to the standard Black-Scholes type formulation (Stulz; 1982). 

 

     The computational haploid genetic algorithm model we have devised for this purpose 

has been programmed in Borland C; Release 5.02 (Sedgewick, 1990) and performs the 
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three basic genetic functions of reproduction, crossover and mutation with the premise 

that in each subsequent generation x number of chromosomes from the previous 

generation will be reproduced based on the principal of natural selection. Following the 

reproduction function, 2(x – 1) number of additional chromosomes will be produced 

through the crossover function, whereby every gth chromosome included in the mating 

pool will be crossed with the (g + 1) th chromosome at a pre-assigned crossover locus. 

There is also a provision in our computer program to introduce a maximum number of 

mutations in each current chromosome population in order to enable rapid adaptation.  

 

B The haploid genetic algorithm as a generalized bandit process 

 

     Let a simple two-armed bandit process be considered whereby it is known that one of 

the arms pays a reward m1 with variance s1
2 and the other arm pays a reward m2 with 

variance s2
2 such that m2 ≤ m1. Then this gives rise to the classical bandit problem 

dilemma regarding which of the two arms to play so as to optimize the trade-off between 

information usage and information acquisition (Berry, 1985). A common solution 

method would be to allocate an equal number of trials between the two arms, say f. 

Suppose that we have a total number of F possible trials. Say we select f such that 2f < F. 

This will consist of the “training” phase. Thereafter, in the subsequent “testing” phase, 

the remaining F – 2f trials are allocated to the arm with the best-observed payoff in the 

“training” phase. Then the expected loss is calculated as follows: 

 

                                         λ (F, f) = |m1 – m2| [(F – f) q (f) + f {1 – q (f)}]               ... (3.6) 
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     In the above equation, q (f) is the probability of selecting the wrong arm as the best 

arm during the “training” phase (De Jong, 1976). The value of q (f) is fairly 

approximated by the tail of the normal distribution as follows: 

 

               q (f) ≈ (1/√2π) {exp (-z2/2)/z}, where z = (√f) {(m1 – m2) / √(s1
2 + s2

2)}  ... (3.7) 

 

     The optimal “training” sample size f* for minimizing the loss function λ (F, f) may be 

obtained by setting λf = 0; as per the usual, first-order condition for minimization. 

 

     However, though procedure sounds simple enough, it is not necessarily the most 

optimal as was shown by Holland. According to his calculations, expected losses could 

be further minimized by allocating exponentially increasing number of trials to the 

observed better arm (Holland, 1975). Though this approach is untenable because it entails 

perfect future knowledge, it at least sets an upper bound to the best solution technique, 

whereby any good technique should asymptotically approach this bound. 

 

     The three-function genetic algorithm performs best in terms of asymptotically 

approaching the upper bound calculated by Holland as it allocates an exponentially 

increasing number of trials to the best-observed chromosomes in terms of the fitness 

criterion. However, with the genetic algorithm, one is actually solving several multi-

armed bandit processes. To make this point clear, let us consider a set of four schemata 

that mutually compete at loci 3 and 5. Two schemata A and B with individual loci i, j are 
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said to be mutually competing if at all loci i = j = 1, 2… L either Ai = Bj = * or Ai ≠ *, Bj 

≠ * and Ai ≠ Bj for at least one locus i = j, where L is the length of each chromosome 

encoded as a bit-string.  

 

* * 0 * 0 * * 

* * 0 * 1 * * 

* * 1 * 0 * * 

* * 1 * 1 * * 

 

     Therefore there are 22 = 4 competing schemata over the two loci 3 and 5 as each one 

of these two loci may be occupied by a 0 or a 1. As they are defined over the same loci, 

they compete for survival within each population. In order to make sure the best 

schemata survive in the population every time, exponentially increasing numbers of trials 

must be allocated to the observed best schemata. This is exactly the same procedure for 

allocating exponentially increasing number of trials to a multi-armed bandit process. In 

our illustration, this is akin to a four-armed bandit process. However, with a genetic 

algorithm, the problem is more complex than a multi-armed bandit process – it is actually 

akin to solving multiple multi-armed bandit problems! For example, in our above 

illustration, for 2 fixed loci in a bit-string of length 7, there are actually 7C2 = 21 of the 

eight-armed bandit processes! In general, for encoded bit-strings of length L there are LCk 

different 2k-armed bandit problems being played out. 
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     We have based our computational model on the premise that 2(x – 1) number of 

additional chromosomes will be produced through the crossover function, for x number 

of chromosomes included in the mating pool through the process of natural selection. 

Every gth chromosome in the mating pool is crossed with the (g + 1) th chromosome at a 

predetermined crossover locus. Then, given that x number of chromosomes are initially 

included in the mating pool following the reproduction function, we will obtain a total 

number of x + 2(x – 1) chromosomes in the first generation’s population.  Here, x number 

are chromosomes retained from the previous generation based on the observed best 

fitness criterion. One or more of these x chromosomes can be, optionally, allowed to 

mutate (i.e. swap of bit positions between 1 and 0 from a particular locus onwards in the 

encoded bit-string). The remaining chromosomes in the first generation, 2(x – 1) in 

number, are the ones that come out as a direct result of our pre-formulated crossover 

function.  Therefore we get the following linear difference equation as the governing 

equation determining chromosome population size in the nth generation (Derivation 

provided in Appendix (ii): 

 

                                               Gn = Gn – 1 + 2 (Gn – 1 – 1) = 3 Gn – 1 – 2                      ... (3.8) 
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C. Constructing a hypothetical financial structured product as a best of 3 assets option  

 

     The terminal payoff from such a financial structured product would be that on the 

asset ending up as the best performer among the three assets within the envelope i.e. 

 

                                              r t=T = Max (S0, S1, S2) t=T                                                                 ... (3.9) 

 

     Two assets with realized returns S1 and S2 can be considered risky i.e. σS1
2, σS2

2 > 0, 

while S0 may be considered risk-free e.g. the return on a government treasury bill i.e. σS0
2 

≈ 0. Then, a dynamic hedging scheme for the issuer of this financial structured product; 

i.e. the option writer; would be to invest in a replicating portfolio consisting of the three 

assets, with funds allocated in particular proportions in accordance with the objective of 

maximizing expected utility i.e. minimizing the tracking error. Then the replicating 

portfolio at t for our 3-asset financial structured product is: 

 

                                     vt = (p0) t eit + (p1) t (S1) t+ (p2) t (S2) t                                                  ... (3.10) 

 

     Then the tracking error at time-point t is given as the difference between the payoff on 

the option at time-point t and the value of the replicating portfolio at that time: 

 

                  |εt| = |Max (S0, S1, S2) t – vt| i.e. 

                  |εt| = |Max (S0, S1, S2) t – {(p0) t eit + (p1) t (S1) t+ (p2) t (S2) t}|              ... (3.11) 
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     If |εt| ≈ 0 then the option writer is perfectly hedged at time-point t. If |εt| ≈ 0 can be 

maintained for the entire lock-in period, then one can say that the dynamic hedging 

scheme has worked perfectly, resulting in utility maximization for the option writer. We 

have used the following hypothetical data set for conducting our computational study 

with the haploid genetic algorithm scheme to minimize the tracking error |εt|: 

 

       S1 (t=0)  1.00 

       S2 (t=0)  1.00 

       S0 (t=0)  1.00 

       Correlation (S1, S2)  0.50 

       µS1  20% 

       µS2  18% 

       σS1  30% 

       σS2  20% 

         I  5% 

         T  12 months 

         Re-balancing frequency  Monthly 

Table 3.1 

 

     We assume that all three assets start off with a realized return of unity at t = 0. The 

correlation between the two risky assets is assumed constant at a moderate 50%. The first 

risky asset is taken to have a slightly higher mean return (20%) but a rather high volatility 

(30%), compared to the mean return (18%) and volatility (20%) of the second one. The 
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risk-free rate is 5% p.a. and the lock-in period is taken as one year. The replicating 

portfolio is re-balanced at the end of each month over the period. 

 

     Thus, if the best performer is the first risky asset at time-point t, |εt| is minimized when 

maximum allocation is made to the first risky asset at t while if the best performer is the 

second risky asset at time-point t, |εt| is minimized if the maximum allocation is made to 

that asset at t. If neither of the two risky assets can outperform the guaranteed return on 

the risk-free asset at t, then |εt| is minimized if maximum allocation is made to the risk-

free asset. Short selling is not permitted in our model.     

             

     To minimize programming involvement our haploid genetic algorithm model is 

designed to handle only univariate optimization models. However, the problem we are 

studying is one of multivariate optimization with three parameters corresponding to the 

portfolio weights of the three assets constituting our financial structured product. 

Therefore, we have taken the allocation for the risk-free asset as given. This then 

essentially reduces our problem to one of univariate optimization, whereby we have to 

minimize the cumulative tracking error given by the following objective function: 

 

          Σt |εt| = Σt |Max (S0, S1, S2) t – {c eit + p t (S1) t+ (1– c – p t) (S2) t}|              ... (3.12) 

 

     Here, p t is the allocation to be made to the first risky asset at every point of re-

balancing and c is the given allocation always made to the risk-free asset thereby 

allowing us to substitute (p2) t with (1– c – p t); as portfolio weights sum up to unity. Then 
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the utility maximizing behavior of the option writer will compel him or her to find out the 

optimal functional values of p t at every t so as to minimize the total error.  

 

     It is quite logical to assume that the p t values will have to be related in some way to 

the sensitivity of the change in potential option payoff to the change in performance of 

the observed best asset within the envelope. With continuous re-balancing, one can 

theoretically achieve |εt| ≈ 0 if portfolio weights are selected in accordance with the 

partial derivatives of the option value with respect to the underlying asset returns, as per 

usual dynamic hedging technique in a Black-Scholes environment. Thus the utility 

maximization goal would be to suppress |εt| to a value as close as possible to zero at every 

t so that overall Σt |εt| is consequently minimized.   Of course, re-balancing costs make 

continuous re-balancing a mathematical artifact rather than a practicable financial 

strategy.  However, monthly re-balancing is mostly practicable even for some asset types 

which are considered relatively illiquid like many of the offshore funds.  

 

     Then, if one accepts the biological origin of utility forms, any sufficiently robust 

evolutionary algorithm should show convergence with a Black Scholes type expected 

utility formulation. In other words, embedding such a utility function in any simple 

heuristic model involving no prior beliefs about probabilities should be evolutionarily 

optimal. This is exactly what our present study is purported to reveal computationally.  
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3.3 Computational Observations  

 

     A Monte Carlo simulation algorithm is used to generate the potential payoffs for the 

option on best of three assets at the end of each month for t = 0, 2 … 11. The word 

potential is crucial in the sense that our option is essentially European and path-

independent i.e. basically to say only the terminal payoff counts. However the replicating 

portfolio has to track the option all through its life in order to ensure an optimal hedge 

and therefore we have evaluated potential payoffs at each t. The potential payoffs are 

computed as Max [(S1) t – (S0) t, (S2) t – (S0) t, 0] in Table 3.2.  

 

      The risky returns S1 and S2 are assumed to evolve over time following the stochastic 

diffusion process of a geometric Brownian motion. The risk-free return S0 is continuously 

compounded approximately at a rate of 0.41% per month giving a 5% annual yield. We 

have run our Monte Carlo simulation model with the hypothetical data in Table 3.1 over 

the one-year lock-in period and calculated the potential option payoffs. All formal 

definitions pertaining to the model are given in Appendix (ii). 

 

t S1 S2 S0 Best Asset Potential Payoff 

0  1  1  1  -  - 

1  1.0169  1.0219  1.0003  Asset 2  0.0216 

2  1.0311  1.0336  1.0010  Asset 2  0.0326 

3  1.0801  1.0820  1.0021  Asset 2  0.0799 

4  1.1076  1.0960  1.0035  Asset 1  0.1041 
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5  1.1273  1.1280  1.0052  Asset 2  0.1228 

6  1.1694  1.1694  1.0073  Asset 2  0.1621 

7  1.2008  1.1923  1.0098  Asset 1  0.1910 

8  1.2309  1.2160  1.0126  Asset 1  0.2183 

9  1.2836  1.2489  1.0157  Asset 1  0.2679 

10  1.3362  1.3030  1.0193  Asset 1  0.3169 

11  1.3617  1.3196  1.0232  Asset 1  0.3385 

Table 3.2 

 

 

 

 

 

 

 

 

Figure 3.1 

 

     The results shown in Table 3.2 and Figure 3.1 show that the second risky asset is the 

best performer towards the beginning and in the middle of lock-in period but the first one 

catches up and in fact outperforms the second one towards the end of the period.  
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t p1S1 p2S2 p0S0 vt 

0  0.4500  0.4500  0.1000  1.0000 

1  0.4576  0.4598  0.1000  1.0175 

2  0.0000  0.9303  0.1001  1.0304 

3  0.0000  0.9738  0.1002  1.0740 

4  0.0000  0.9864  0.1003  1.0867 

5  1.0145  0.0000  0.1005  1.1151 

6  0.0000  1.0524  0.1007  1.1532 

7  0.0000  1.0731  0.1008  1.1741 

8  1.1078  0.0000  0.1013  1.2091 

9  1.1552  0.0000  0.1016  1.2568 

10  1.2025  0.0000  0.1019  1.3045 

11  1.2255  0.0000  0.1023  1.3279 

Table 3.3 

 

     For an initial input of $1, apportioned at t = 0 as 45% between S1 and S2 and 10% for 

S0, we have constructed five replicating portfolios according to a simple rule-based logic: 

k% of funds are allocated to the observed best performing risky asset and the balance 

proportion i.e. (90 – k) % to the other risky asset (keeping the portfolio self-financing 

after the initial investment) at every monthly re-balancing point. We have reduced k by 

10% for each portfolio starting from 90% and going down to 50%. As is shown in 

Appendix (ii), this simple hedging scheme performs quite well over the lock-in period 

when k = 90%. But the performance falls away steadily as k is reduced every time.  



 65

3.4 Inferential Remarks based on the Computation Results 

 

Choice of k Cumulative Tracking Error 
90%  0.1064 
80%  0.1172 
70%  0.1281 
60%  0.1390 
50%  0.1498 

Table 3.4 

 

     The fact that a dominance pattern can be noticed for 80% < k* ≤ 90* is quite evident 

from the output data in Table 3.4 and the graphical plot of that data and accompanying 

tabulated figures in Appendix (ii). It may be noted to be of significance that k* ≈ 90% 

indeed comes closest to the percentage allocation for the best performing asset made 

according to the sensitivity of change in the potential payoff on the option to a change in 

performance of the observed best performer. This indeed satisfies the dynamic hedging 

principle in a Black Scholes environment to the maximal extent possible given monthly 

re-balancing, a fixed allocation to S0 and no shorting, as were our imposed conditions. 

This does seem to lend credence to the belief that embedding a Black Scholes type of 

expected payoff (utility) maximization function is indeed evolutionarily optimal. 

 

     Having computationally verified the biological basis of a Black-Scholes type expected 

utility function in the dynamic delta hedging situation, we now proceed to 

computationally derive an Information Theoretic model of utility applicable to dynamic 

risk management engineered by a multi-asset options-based portfolio insurance strategy.  
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4. A Proposed Information Theoretic Model of Utility Applicable to 

Active Risk Management Engineered by Multi-asset Options-based 

Portfolio Insurance Strategy for Distinct Investor Profiles 

 

     In early nineteenth century most economists conceptualized utility as a psychic reality 

– cardinally measurable in terms of utils like distance in kilometers or temperature in 

degrees centigrade. In the later part of nineteenth century Vilfredo Pareto discovered that 

all the important aspects of Demand theory could be analyzed ordinally using geometric 

devices, which later came to be known as “indifference curves”. The indifference curve 

approach effectively did away with the notion of a cardinally measurable utility and went 

on to form the methodological cornerstone of modern microeconomic theory.  

 

     An indifference curve for a two-commodity model is mathematically defined as the 

locus of all such points in E2 where different combinations of the two commodities give 

the same level of satisfaction to the consumer so as the consumer is indifferent to any 

particular combination. Such indifference curves are always convex to the origin because 

of the operation of the law of substitution. This law states that the scarcer a commodity 

becomes, the greater becomes its relative substitution value so that its marginal utility 

rises relative to the marginal utility of the other commodity that has become 

comparatively plentiful. 
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     In terms of the indifference curves approach, the problem of utility maximization for 

an individual consumer may be expressed as a constrained non-linear programming 

problem that may be written in its general form for an n-commodity model as follows: 

 

Maximize U = U (C1, C2 … Cn) 

                                              Subject to Σ CjPj ≤ B 

                                             and Cj ≥ 0, for j = 1, 2 … n                                         ... (4.1) 

 

     If the above problem is formulated with a strict equality constraint i.e. if the consumer 

is allowed to use up the entire budget on the n commodities, then the utility maximizing 

condition of consumer’s equilibrium is derived as the following first-order condition: 

 

∂U/∂Cj = (∂U/∂Cj) - λPj = 0 i.e. 

                                           (∂U/∂Cj)/Pj = λ* = constant, for j = 1, 2 … n               ... (4.2) 

 

     This pertains to the classical economic theory that in order to maximize utility, 

individual consumers necessarily must allocate their budget so as to equalize the ratio of 

marginal utility to price for every commodity under consideration, with this ratio being 

found equal to the optimal value of the Lagrangian multiplier λ*. 

 

     However a mathematically necessary pre-condition for the above indifference curve 

approach to work is (UC1, UC2 … UCn) > 0 i.e. the marginal utilities derived by the 

consumer from each of the n commodities must be positive. Otherwise of course the 
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problem degenerates.  To prevent this from happening one needs to strictly adhere to the 

law of substitution under all circumstances. This however, at times, could become an 

untenable proposition if measure of utility is strictly restricted to an intrinsic one.  This is 

because, for the required condition to hold, each of the n commodities necessarily must 

always have a positive intrinsic utility for the consumer. However, this invariably leads to 

anomalous reasoning like the intrinsic utility of a woolen jacket being independent of the 

temperature or the intrinsic utility of an umbrella being independent of rainfall! 

 

     Choice among alternative courses of action consist of trade-offs that confound 

subjective probabilities and marginal utilities and are almost always too coarse to allow 

for a meaningful separation of the two. From the viewpoint of a classical statistical 

decision theory like that of Bayesian inference for example, failure to obtain a correct 

representation of the underlying behavioral basis would be considered a major pitfall in 

the aforementioned analytical framework. 

 

     Choices among alternative courses of action are largely determined by the relative 

degrees of belief an individual attaches to the prevailing uncertainties. Following Vroom 

(Vroom; 1964), the motivational strength Sn of choice cn among N alternative available 

choices from the choice set C = {c1, c2 …cN} may be ranked with respect to the 

multiplicative product of the relative reward r (cn) that the individual attaches to the 

consequences resulting from the choice cn, the likelihood that the choice set under 

consideration will yield a positive intrinsic utility and the respective probabilities given 

by p{r (cn)} associated with r (cn) such that: 
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                 Smax = Max 
n [r (cn) x p (Ur(C) > 0) x p{r (cn)}], n = 1, 2 … N               ...  (4.3) 

                                      

     Assuming for the time-being that the individual is calibrated with perfect certainty 

with respect to the intrinsic utility resulting from a choice set such that we have the 

condition p (Ur(C)  > 0) = {0, 1}, the above model can be reduced as follows: 

 

                   Smax = Max k [r (ck) x p{r (ck)}], k = 1, 2 … K such that K < N          ...  (4.4) 

                                      

     Therefore, choice A, which entails a large reward with a low probability of the reward 

being actualized, could theoretically yield the same motivational strength as choice B, 

which entails a smaller reward with a higher probability of the reward being actualized.  

 

     However, we recognize the fact that the information conveyed to the decision-maker 

by the outcomes would be quite different for A and B though their values may have the 

same mathematical expectation. Therefore, whereas intrinsic utility could explain the 

ranking with respect to expected value of the outcomes, there really has to be another 

dimension to utility whereby the expected information is considered – that of extrinsic 

utility. So, though there is a very low probability of having an unusually cold day in 

summer, the information conveyed to the likely buyer of a woolen jacket by occurrence 

of such an aberration in the weather pattern would be quite substantial, thereby validating 

an extended substitution law based on an expected information measure of utility.  The 
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specific objective of this paper is to formulate a mathematically sound theoretical edifice 

for the formal induction of extrinsic utility into the folds of statistical decision theory. 

 

4.1 A few essential working definitions 

 
Object: Something with respect to which an individual may perform a specific goal-

oriented behavior 

 

Object set:  The set O of a number of different objects available to an individual at any 

particular point in space and time with respect to achieving a goal where n {O} = K 

 

Choice: A path towards the sought goal emanating from a particular course of action - for 

a single available object within the individual’s object set, there are two available choices 

- either the individual takes that object or he or she does not take that object. Therefore, 

generalizing for an object set with K alternative objects, there can be 2K alternative 

courses of action for the individual 

 

Choice set: The set C of all available choices where C = P O, n {C} = 2K 

 

Outcome: The relative reward resulting from making a particular choice 

 

     Decision-making is nothing but goal-oriented behavior. According to the celebrated 

theory of reasoned action (Fishbain, 1979), the immediate determinant of human 

behavior is the intention to perform (or not to perform) the behavior. For example, the 
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simplest way to determine whether an individual will invest in Acme Inc. equity shares is 

to ask whether he or she intends to do so. This does not necessarily mean that there will 

always be a perfect relationship between intention and behavior. However, there is no 

denying the fact that people usually tend to act in accordance with their intentions.  

 

     However, though intention may be shaped by a positive intrinsic utility expected to be 

derived from the outcome of a decision, the ability of the individual to actually act 

according to his or her intention also needs to be considered. For example, if an investor 

truly intends to buy a call option on the equity stock of Acme Inc. even then his or her 

intention cannot get translated into behavior if there is no exchange-traded call option 

available on that equity stock.   

 

     Thus we may view the additional element of choice as a measure of extrinsic utility. 

Utility is not only to be measured by the intrinsic want-satisfying capacity of a commodity 

for an intending individual but also by the availability of the particular commodity at that 

point in space and time to enable that individual to act according to his or her intension.  

Going back to our woolen jacket example, though the intrinsic utility of such a garment 

in summer is practically zero, the extrinsic utility afforded by its mere availability can 

nevertheless suffice to uphold the law of substitution. 
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4.2 Utility and Thermodynamics 

 

     In our present paper we have attempted to extend the classical utility theory applying 

the entropy measure of information (Shannon, 1948; Jaynes, 1957), which by itself bears 

a direct constructional analogy to the well-known Boltzmann equation in 

thermodynamics (Fermi, 1956).  

 

     There is some uniformity in views among economists as well as physicists that a 

functional correspondence exists between the formalisms of economic theory and 

classical thermodynamics. The laws of thermodynamics can be intuitively interpreted in 

an economic context and the correspondences do show that thermodynamic entropy and 

economic utility are related concepts sharing the same formal framework. Utility is said 

to arise from that component of thermodynamic entropy whose change is due to 

irreversible transformations. This is the standard Carnot entropy given by dS = δQ/T 

where S is the entropy measure, Q is the thermal energy of state transformation 

(irreversible) and T is the absolute temperature (Smith, 1998). In this chapter however we 

will keep to the information theoretic definition of entropy rather than the purely 

thermodynamic one. 

 

     Underlying premises of our extrinsic utility model: 

 

1.  Utility derived from making a choice can be distinctly categorized into two forms: 
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(a) Intrinsic utility (Ur(C)) – the intrinsic, non-quantifiable capacity of the 

potential outcome from a particular choice set to satisfy a particular 

human want under given circumstances; in terms of expected utility theory 

Ur (C) = Σ r (cj) p{r (cj)}, where j = 1, 2 … K and 

 

(b) Extrinsic utility (UX) – the additional possible choices afforded by the 

mere availability of a specific object within the object set of the individual 

 

2.  An choice set with n (C) = 1 (i.e. when K = 0) with respect to a particular 

individual corresponds to lowest (zero) extrinsic utility; so UX cannot be negative 

 

3.  The law of diminishing marginal utility tends to hold in case of UX when an 

individual repeatedly keeps making the same choice to the exclusion of other 

available choices within his or her choice set 

 

     Expressing the frequency of alternative choices in terms of the probability of getting 

an outcome rj by making a choice cj, the generalized extrinsic utility function can be 

framed as a modified version of Shannon’s entropy function as follows: 

 

                                UX = - K Σj p {r (cj)} log2 p {r (cj)}, j = 1, 2 … 2K                            ... (4.5) 
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     The multiplier -K = -n (O) is a scale factor somewhat analogous to the Boltzmann 

constant in classical thermodynamics with a reversed sign. Therefore general extrinsic 

utility maximization reduces to the following non-linear programming problem: 

 

                                           Maximize UX = - K Σj p {r (cj)} log2 p {r (cj)} 

           Subject to Σ p {r (cj)} = 1, 

                                                        p {r (cj)} ≥ 0; and 

                                                        j = 1, 2 … 2K                                                      ... (4.6) 

 

     Putting the objective function into the usual Lagrangian multiplier form, we get 

 

                                  Z = - K Σ p {r (cj)} log2 p {r (cj)} + λ (Σ p {r (cj)} – 1)          ... (4.7) 

 

     Now, as per the first-order condition for maximization, we have 

 

                                    ∂Z/∂ p {r (cj)} = - K (log2 p {r (cj)} + 1) + λ = 0 i.e. 

 

                                     log2 p {r (cj)} = λ/K – 1                                                        ... (4.8) 

 

     Therefore; for a pre-defined K; p {r (cj)} is independent of j, i.e. all the probabilities 

are necessarily equalized to the constant value p {r (cj)}*= 2-K at the point of maximum 

UX.  
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     The analytical reasoning we have employed here is related to the earlier work of 

Abbas (2002) where he utilized Shannon’s definition of entropy as a measure for the 

spread of coordinates of a utility increment vector. He also applied the differential form 

of entropy expression in continous form to a utility density function to get a value of UX. 

 

     It is also intuitively obvious that when p {r (cj)} = 2-K for j = 1, 2 … 2K, the individual 

has the maximum element of choice in terms of the available objects within his or her 

object set. For a choice set with a single available choice, the extrinsic utility function 

will be simply given as follows: 

 

              UX = – p{r (c)} log2 p{r (c)} – (1 – p{r (c)}) log2 (1 – p{r (c)})                 ... (4.9) 

 

     Then the slope of the marginal extrinsic utility curve will as usual be given by the 

second-order condition d2UX/dp{r (c)} 2 < 0, and this can additionally serve as an 

alternative basis for intuitively deriving the generalized, downward-sloping demand 

curve and is thus a neat theoretical spin-off!  

 

     Therefore, though the mathematical expectation of a reward resulting from two 

mutually exclusive choices may be the same thereby giving them equal rank in terms of 

the intrinsic utility of the expected reward, the expected information content of the 

outcome from the two choices will be quite different given different probabilities of 

obtaining the relative rewards. The following vector will then give a composite measure 

of total expected utility from the object set: 
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  U = [Ur, UX] = [Σr (cj) p{r (cj)}, - K Σj p {r (cj)} log2 p {r (cj)}], j = 1, 2 … 2K … (4.10) 

 

     Now, having established the essential premise of formulating an extrinsic utility 

measure, we can proceed to let go of the assumption that an individual is calibrated with 

perfect certainty about the intrinsic utility resulting from the given choice set so that we 

now look at the full Vroom model rather than the reduced version. If we remove the 

restraining condition that p (Ur (C) > 0) = {0, 1} and instead we have the more general case 

of 0 ≤ p (Ur(C) > 0) ≤ 1, then we introduce another probabilistic dimension to our choice 

set whereby the individual is no longer certain about the nature of the impact the 

outcomes emanating from a specific choice will have on his intrinsic utility.  This can be 

intuitively interpreted in terms of the likely opportunity cost of making a choice from 

within a given choice set to the exclusion of all other possible choice sets. For the 

particular choice set C, if the likely opportunity cost is less than the potential reward 

obtainable, then Ur (c) > 0, if opportunity cost is equal to the potential reward obtainable, 

then Ur(C)  = 0, else if the opportunity cost is greater than the potential reward obtainable 

then Ur (C) < 0.  Writing Ur(C) = Σj r (cj) p{r (cj)}, j = 1, 2 … N, the total expected utility 

vector now becomes: 

 

[Ur(C), UX] = [Σj r (cj) p{r (cj)}, - K Σ p {r (cj)| Ur(C) > 0} log2 p {r (cj)| Ur(C) > 0}]          ... (4 .11) 

 

     Here j = 1 ... N and p {r (cj)| Ur(C) > 0} may be estimated by the standard Bayes 

criterion as under: 
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     p {r (cj)| Ur(c) >0} = [p {(Ur(C) ≥0|r (cj)} p {(r (cj)}][Σj p {(Ur(C) >0|r (cj)} p {(r (cj)}]-1       … (4.12) 

 

4.3 Evaluating an investor’s extrinsic utility from capital-guaranteed, financial 

structured products 

 

     Let a financial structured product be made up of a basket of n different assets such that 

the investor has the right to claim the return on the best-performing asset out of that 

basket after a stipulated holding period. Then, if one of the n assets in the basket is the 

risk-free asset then the investor is assured of a minimum return equal to the risk-free rate 

i on his invested capital at the termination of the stipulated holding period (minus the 

stipulated costs).  This effectively means that his or her investment becomes 

endogenously capital-guaranteed as the terminal wealth, even at its worst, cannot be 

lower in value to the initial wealth plus the return earned on the risk-free asset minus a 

finite cost of portfolio insurance.  

 

     Therefore, with respect to each risky asset, we can have a binary response from the 

investor in terms of his or her funds-allocation decision whereby the investor either takes 

funds out of an asset or puts funds into an asset. Since the overall portfolio has to be self-

financing in order to pertain to a Black-Scholes kind of pricing model, funds added to one 

asset will also mean same amount of funds removed from one or more of the other assets 

in that basket. If the basket consists of a single risky asset s (and of course cash as the 

risk-free asset) then, if ηs is the amount of re-allocation effected each time with respect to 
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the risky asset s, the two alternative, mutually exclusive choices open to the investor with 

respect to the risky asset s are as follows:  

 

(1) C (ηs ≥ 0) (funds left in asset s), with associated outcome r (ηs ≥ 0); and  

 

(2) C (ηs < 0) (funds removed from asset s), with associated outcome r (ηs < 0) 

 

     Therefore what the different assets are giving to the investor apart from their intrinsic 

utility in the form of higher expected terminal reward is some extrinsic utility in the form 

of available re-allocation options. Then the expected present value of the final return is 

given as follows: 

 

                        E (r) = Max [w, Max j {e-it E (rj) t}], j = 1, 2 … 2n-1                                … (4.13) 

 

     In the above equation i is the rate of return on the risk-free asset and t is the length of 

the investment horizon in continuous time and w is the initial wealth invested i.e. 

ignoring insurance cost, if the risk-free asset outperforms all others E (r) = weit/eit = w.  

 

     Now what is the probability of each of the (n – 1) risky assets performing worse than 

the risk-free asset? Even if we assume that there are some cross-correlations present 

among the (n – 1) risky assets, given the statistical nature of the risk-return trade-off the 

joint probability of these assets performing worse than the risk-free asset will be very low 

over moderately long investment horizons.  And this probability will keep going down 
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with every additional risky asset added to the basket. Thus each additional asset will 

empower the investor with additional choices with regards to re-allocating his or her 

funds among the different assets according to their observed performances.  

 

     Intuitively we can make out that the extrinsic utility to the investor is indeed 

maximized when there is an equal positive probability of actualizing each outcome rj 

resulting from ηj given that the intrinsic utility Ur(C) is greater than zero. By a purely 

economic rationale, each additional asset introduced into the basket will be so introduced 

if and only if it significantly raises the expected monetary value of the potential terminal 

reward. As already demonstrated, the extrinsic utility maximizing criterion will be given 

as under: 

                                  p (rj | Ur(C) > 0)* = 2-(n-1) for j = 1, 2 …2n-1                                      … (4.14) 

 

 The composite utility vector from the multi-asset structured product will be as follows: 

 

[Ur(C), UX] = [E ( r ), - (n – 1)Σ p {rj | Ur(C) > 0} log2 p {rj | Ur(C) > 0}], j = 1, 2 … 2n-1       … (4.15) 

 

4.4 Choice set with a structured product having two risky assets (and cash): 

0 0 

1 0 

0 1 

1 1 

Table 4.1 
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     The first row of Table 4.1 shows that the investor can remove all funds from the two 

risky assets and convert it to cash (the risk-free asset), or funds can be taken out of asset 2 

and put it in asset 1, or the investor can take funds out of asset 1 and put it in asset 2, or 

the investor can convert some cash into funds and put it in both the risky assets. Thus 

there are 4 alternative choices for the investor when it comes to re-balancing his 

portfolio. Therefore we may classify such a structured, financial product as 4-bit product. 

 

4.5 Choice set with a structured product having three risky assets (and cash): 

 

0 0 0 

0 0 1 

0 1 0 

0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

Table 4.2 

 

     That is, the investor can remove all funds from the three risky assets and convert it 

into cash (the risk-free asset), or the investor can take funds out of asset 1 and asset 2 and 

put it in asset 3, or the investor can take funds out from asset 1 and asset 3 and put it in 

asset 2, or the investor can take funds out from asset 2 and asset 3 and put it in asset 1, or 



 81

the investor can take funds out from asset 1 and put it in asset 2 and asset 3, or the 

investor can take funds out of asset 2 and put it in asset 1 and asset 3, or the investor can 

take funds out of asset 3 and put it in asset 1 and asset 2, or the investor can convert some 

cash into funds and put it in all three of the assets. Thus there are 8 alternative choices for 

the investor when it comes to re-balancing the portfolio. Therefore we may classify such 

a structured, financial product as 8-bit product. An 8-bit product will impart greater utilty 

of empowerment to an individual investor due to the wider range of decision options. 

 

     Of course, according to the Black-Scholes hedging principle, the re-balancing needs to 

be done each time by setting the optimal proportion of funds to be invested in each asset 

equal to the partial derivatives of the option valuation formula with respect to each of 

these assets. However, the total number of alternative choices available to the investor 

increases with every new risky asset that is added to the basket thereby contributing to 

the extrinsic utility in terms of the expected information content of the total portfolio. 

 

4.6 Coding of financial structured product information  

 

     Extending the entropy measure of extrinsic utility, we may conceptualize the 

interaction between the buyer and the vendor as a two-way communication flow whereby 

the vendor informs the buyer about the expected utility derivable from the product on 

offer and the buyer informs the seller about his or her individual expected utility criteria. 

An economic transaction goes through if the two sets of information are compatible. Of 

course, the greater expected information content of the vendor’s communication, the 
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higher is the extrinsic utility of the buyer. Intuitively, the expected information content of 

the vendor’s communication will increase with increase in the variety of the product on 

offer, as that will increase the likelihood of matching the buyer’s expected utility criteria.  

 

     The product information from vendor to potential buyer may be transferred through 

some medium e.g. the vendor’s website on the Internet, a targeted e-mail or a telephonic 

promotion scheme.  But such transmission of information is subject to noise and 

distractions brought about by environmental as well as psycho-cognitive factors.  While a 

distraction is prima facie predictable, (e.g. the pop-up windows that keep on opening 

when some commercial websites are accessed), noise involves unpredictable 

perturbations (e.g. conflicting product information received from any competing sources).  

 

     Transmission of information calls for some kind of coding. Coding may be defined as 

a mapping of words from a source alphabet A to a code alphabet B. A discrete, finite 

memory-less channel with finite inputs and output alphabets is defined by a set of 

transition probabilities pi (j), i = 1, 2 … a and j = 1, 2 … b with Σj pi (j) = 1 and pi (j) ≥ 0. 

Here pi (j) is the probability that for an input letter i output letter j will be received.  

 

     A code word of length n is defined as a sequence of n input letters, which are actually 

n integers chosen from 1, 2 … a. A block code of length n having M words is a mapping 

of the message integers from 1 to M into a set of code words each having a fixed length 

n.  Thus for a structured product with N component assets, a block code of length n 

having N words would be used to map message integers from 1 to N, corresponding to 
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each of the N assets, into a set of a fixed-length code words. Then there would be a total 

number of C = 2N possible combinations such that log2 C = N binary-state devises (flip-

flops) would be needed.   

 

     A decoding system for a block code is the inverse mapping of all output words of 

length n into the original message integers from 1 to M. Assuming all message integers 

are used with same probability 1/M, the probability of error Pe for a code and decoding 

system ensemble is defined as the probability of an integer being transmitted and 

received as a word which is mapped into another integer i.e. Pe is the probability of 

wrongly decoding a message.  

 

      Therefore, in terms of our structured product set up, Pe might be construed as the 

probability of misclassifying the best performing asset. Say within a structured product 

consisting of three risky assets  - a blue-chip equity portfolio, a market-neutral hedge 

fund and a commodity future (and cash as the risk-free asset), while the original 

transmitted information indicates the hedge fund to be the best performer, due to 

erroneous decoding of the encoded message, the equity portfolio is interpreted as the best 

performer. Such erroneous decoding could result in investment funds being allocated to 

the wrong asset at the wrong time.  
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 4.7 Relevance of Shannon-Fano coding to structured product information 

transmission 

 

     By the well-known Kraft’s inequality we have K = Σn 2 –li ≤ 1, where li stands for 

some definite code word lengths with a radix of 2 for binary encoding. For block codes, li 

= l for i = 1, 2 … n. As per Shannon’s coding theorem, it is possible to encode all 

sequences of n message integers into sequences of binary digits in such a way that the 

average number of binary digits per message symbol is approximately equally to the 

entropy of the source, the approximation increasing in accuracy with increase in n. For 

efficient binary codes, K = 1 i.e. log2 K = 0 as it corresponds to the maximal entropy 

condition. Therefore the inequality occurs if and only if pi ≠ 2 –li. Though the Shannon-

Fano coding scheme is not strictly the most efficient, it has the advantage of directly 

deriving the code word length li from the corresponding probability pi. With source 

symbols s1, s2 … sn and their corresponding probabilities p1, p2 … pn, where for each pi 

there is an integer li, and then given that we have bounds that span a unit length, we have 

the following relationship: 

 

                                           log2 (pi
-1) ≤ li < log2 (pi

-1) + 1                                       … (4.16) 

 

     Removing the logs, taking reciprocals and summing each term we therefore end up 

with, Σn pi ≥ Σn 2li ≥ (Σn pi)/2, that is, 

 

                                                         1 ≥ Σn 2li ≥ ½                                                  … (4.17) 
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     Inequality (4.17) gets us back to the Kraft’s inequality. This shows that there is an 

instantaneously decodable code having the Shannon-Fano lengths li. By multiplying 

inequality (4.16) by pi and summing we get: 

 

Σn (pi log2 pi
-1) ≤ Σn pili < Σn (pi log2 pi

-1) + 1, i.e. 

                                                 H2 (S) ≤ L ≤ H2 (S) + 1                                          … (4.18) 

 

     That is, in terms of the average Shannon-Fano code length L, we have conditional 

entropy as an effective lower bound while it is also the non-integral component of the 

upper bound of L. This underlines the relevance of a Shannon-Fano form of coding to our 

structured product formulation as this implies that the average code word length used in 

this form of product information coding would be bounded by a measure of extrinsic 

utility to the potential investor of the financial structured product itself, which is 

definitely an intuitively appealing prospect. 

 

4.8 Conceptualizing financial structured product information transmission as a 

generalized Markov process 

 

     The Black-Scholes option-pricing model is based on the underlying assumption that 

asset prices evolve according to the geometric diffusion process of a Brownian motion. 

The Brownian motion model has the following fundamental assumptions: 
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(1). W0=0 

(2). Wt-Ws is a random variable that is normally distributed with mean 0 and variance t-s 

(3). Wt-Ws is independent of Wv-Wu if (s, t) and (u, v) are non-overlapping time 

intervals  

 

     Property (3) implies that the Brownian motion is a Markovian process with no long-

term memory. The switching behavior of asset prices from “high” (Bull state) to “low” 

(Bear state) and vice versa according to Markovian transition rule constitutes a well-

researched topic in stochastic finance. It has in fact been proved that steady-state 

equilibrium exists when the state probabilities are equalized for a stationary transition-

probability matrix (Bhattacharya and Samanta, 2003). This steady-state equilibrium 

corresponds to the condition of strong efficiency in the financial markets whereby no 

historical market information can result in arbitrage opportunities over any significant 

length of time.  

 

     By logical extension, considering a structured portfolio with n assets, the best 

performer may be hypothesized to be traceable by a first-order Markov process, whereby 

the best performing asset at time t+1 is dependent on the best performing asset at time t. 

For example, with n = 3, we have the following state-transition matrix: 
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Table 4.3 

 

     In information theory also, a similar Markov structure is used to improve the encoding 

of a source alphabet. For each state in the Markov system, an appropriate code can be 

obtained from the corresponding transition probabilities of leaving that state. The 

efficiency gain will depend on how variable the probabilities are for each state 

(Wolfowitz, 1957). However, as the order of the Markov process is increased, the gain 

will tend to be less and less while the number of attainable states approaches infinity. 

 

     The strength of the Markov formulation lies in its capacity of handling correlation 

between successive states. If S1, S2 … Sm are the first m states of a stochastic variable, 

what is the probability that the next state will be Si?  This is written as the conditional 

probability p (Si | S1, S2 … Sm). Then, the Shannon measure of information from a state Si 

is given as usual as follows: 

 

                                    I (Si | S1, S2 … Sm) = log2 {p (Si | S1, S2 … Sm)}-1                     … (4.19) 

 

 

 

 Asset 1 Asset 2  Asset 3 

Asset 1  P (1 | 1) P (2 | 1) P (3 | 1) 

Asset 2 P (2 | 1) P (2 | 2) P (3 | 2) 

Asset 3 P (3 | 1) P (3 | 2) P (3 | 3) 
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     The entropy of a Markov process is then derived as follows: 

 

                                   H (Si) = Σ p (S1, S2 … Sm, Si) I (Si | S1, S2 … Sm)              … (4.20) 
                                                Sm+1 

 

     Then the extrinsic utility to an investor from the ith asset included within a financial 

structured product expressed in terms of the entropy of a Markov process governing the 

state-transition of the best performing asset over N component risky assets (and cash as 

the one risk-free asset) would be obtainable as follows: 

 

                                Ux = H (Si) = Σ p (S1, S2 … Sm, Si) I (Si | S1, S2 … Sm)          ... (4.21) 
                                                      SN+1 

 
                                                      
     However, to find the entropy of a Markov source alphabet one needs to explicitly 

derive the stationary probabilities of being in each state of the Markov process. But these 

state probabilities may be hard to derive explicitly especially if there are a large number 

of allowable states (e.g. corresponding to a large number of elementary risky assets 

within a financial structured product). Using Gibbs inequality, it can be show that the 

following limit can be imposed for bounding the entropy of the Markov process: 

 

                Σj p (Sj) H (Si | Sj) ≤ H (S*), where H (S*) is the adjoint system           ... (4.22) 

 

     The entropy of the original message symbols given by the zero memory source adjoint 

system with p (Si) = pi bound the entropy of the Markov process. The equality holds if 

and only if p (Sj, Si) = pjpi that is, in terms of the structured portfolio set up, the equality 
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holds if and only if the joint probability of the best performer being the pair of assets i 

and j is equal to the product of their individual probabilities (Hamming, 1986).  Thus a 

clear analogical parallel may be drawn between Markov structure of the coding process 

and performances of financial assets contained within a structured investment portfolio. 

 

4.9 Conclusion  

 

     In this chapter we have basically outlined a novel methodological approach whereby 

expected information measure is used as a measure of utility derivable from a basket of 

commodities. We have illustrated the concepts with an applied finance perspective 

whereby we have used this methodological approach to derive a measure of investor 

utility from a structured financial portfolio consisting of many elementary risky assets 

combined with cash as the risk-free asset thereby giving the product a quasi - capital 

guarantee status. We have also borrowed concepts from mathematical information theory 

and coding to draw analogical parallels with the utility structures evolving out of multi-

asset, financial structured products. In particular, principles of Shannon-Fano coding 

have been applied to the coding of structured product information for transmission from 

vendor (fund manager) to the potential buyer (investor). Finally we have dwelled upon 

the very similar Markovian structure of coding process and that of asset performances.  

 

     Appendix (iii) presents a computational exposition of our proposed information 

theoretic utility measure scheme for multi-asset option-based financial structured 

products with actual market price data for a product consisting of three risky assets – a 
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long position in an equity portfolio closely replicated by the S&P 500 index, a long 

position in gold futures and a long position in the Lehman Brothers Growth Fund. The 3-

month T-Bill rates act as a proxy for the return on the risk-free asset. A downside 

protection mechanism akin to a dynamic threshold management scheme is formulated to 

manage the overall portfolio and extrinsic utilities are measured in terms of entropy.  

 

     This chapter in many ways is a curtain raiser on the different ways in which tools and 

concepts from mathematical information theory can be applied in utility analysis in 

general and to analyzing investor utility preferences in particular. It seeks to extend the 

normal peripheries of utility theory to a new domain – information theoretic utility.  
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5. Concluding Perspectives 

 

     Our line of thinking started with the cognitive psychological basis of perceived risk in 

the first chapter where we formulated a neutrosophic notion of such risk which 

highlighted the intrinsic desirability of downside-protected investment strategies. 

Subsequently we mathematically investigated the intrinsic utility of a simple portfolio 

insurance strategy involving exchange-traded put options and proved a general theorem 

of consistent preference relating to option purchase decisions of an individual investor. 

We then computationally demonstrated the evolutionary optimality of a Black-Scholes 

multi-asset, dynamic hedging scheme that uses synthetic puts instead of exchange traded 

ones.  Finally we took another close look at neoclassical utility theory and examined 

some of its shortcomings before letting our thought processes culminate in a cardinalized 

extrinsic utility concept in the form of the Shannon-Boltzmann entropy measure.  

 

     The entropic measure of utility we have postulated here is however not meant to be a 

theoretical alternative to the formal devices employed by neoclassical economists to 

model utility in general.  In fact there is no clash of paradigms between our proposed 

entropic utility concept and that of neoclassical economics in the sense that our entropic 

model is basically offered as an extension of the notion of neoclassical intrinsic utility to 

a higher dimension; incorporating the utility of choice. Such a measure then becomes 

perfectly appropriate to measure the extrinsic utility of choice afforded by a complex, 

multi-asset financial structured product over and above the intrinsic utility offered by 

such a product which is measurable in terms of the standard framework of risk and return.   
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     Our entropic measure of extrinsic utility, being a novel methodological approach, 

offers substantial scope of future academic research especially in exploring the analogical 

Markovian properties of asset performances and message transmission and devising an 

efficient coding scheme to represent the two-way transfer of utility information from 

vendor to buyer and vice versa in transactions involving financial structured products. 

The mathematical kinship between neoclassical utility theory and classical 

thermodynamics is also worth exploring, and is likely to be aimed at establishing some 

higher-dimensional, formal connectivity between isotherms and indifference curves. Our 

postulated rationalization loop conjecture to explain long-run financial market pricing 

anomalies also offers immediate scope of rigorous empirical research to test its veracity.  

 

     Apart from generating purely academic interest, we feel that our work shall also 

stimulate germination of new ideas on the applied side. Indeed it is not too far-fetched to 

envisage direct financial engineering applications of our extrinsic utility model whereby 

custom-made financial structured products could be developed which match the utility 

profile of an individual investor both intrinsically – in terms of  risk-reward preferences, 

as well as extrinsically –  in terms of the nature and extent of the available choice set.      

 

     Also, our evolutionary derivation of a Black-Scholes multi-asset, dynamic hedging 

scheme does provide significant food for thought as to the practical possibilities of using 

self-adaptive algorithms to generate optimal hedge parameters for insured portfolios in 

situations where analytical extraction of such parameters may prove too daunting a task.  
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     The present work is mainly intended as a theoretical contribution to the 

conglomeration of disparate bodies of knowledge that are loosely encapsulated within the 

umbrella term of Computational Finance.   While few scientific theories advanced to date 

have perennially withstood the test of time, many have left lasting impressions in the 

annals of human endeavour inspite of their revealed shortcomings. It may so happen that 

some of the key theoretical constructs we have proposed here like the neutrosophic 

notion of perceived risk and the entropic utility measure come to be replaced over time 

by better constructs through a simple process of natural selection.  However we are 

optimistic that our work will merit its own humble position both within the hallowed 

portals of academia as well as the more prosaic realms of commerce and industry. 
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Appendix (i) 

 

Monte Carlo output of utility forms evolving out of a simple options-based portfolio 

insurance strategy involving an exchange-traded put option  

 

A. Monte Carlo computation of investor utility in terms of expected excess equity: 

 

     If the market is likely to move adversely, holding a long put alongside ensures that the 

investor is better off than just holding a long position in the underlying asset. The long 

put offers the investor some kind of price insurance in case the market goes down. This 

strategy is known in derivatives parlance as a protective put.  The strategy effectively 

puts a floor on the downside deviations without cutting off the upside by too much.  From 

the expected changes in investor’s equity we can computationally derive his or her utility 

curves under the strategies A1 and A2 in each of the three probability spaces D, N and U 

as defined in Chapter 2. 

  

     The following hypothetical data have been assumed to calculate the simulated put 

price: 

 

S = $50.00 (purchase price of the underlying security) 

X = $55.00 (put strike price) 

(T – t) = 1 (single period investment horizon) 

Risk-free rate = 5% 
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     The put options are valued by Monte Carlo simulation of a trinomial tree using a 

customized MS-Excel spreadsheet for a hundred independent replications in each space. 

Note that no ex ante assumption is made about the volatility parameter.  

 

Event space: D  

Strategy: A1 (Long underlying asset) 
 
 
 
Instance (i):  (–) ∆S = $5.00, (+) ∆S = $15.00 
 
                

Table (i).1 
 
 
     To see how the expected change in investor’s equity goes up with an increased upside 

potential we will double the possible up movement at each of the next two stages while 

keeping the down movement unaltered. This should enable us to account for any possible 

loss of investor utility by way of the cost of using a portfolio insurance strategy. 

                                              

Instance (ii):  (+) ∆S = $30.00 
 

Table (i).2 

Price movement Probability Expected ∆ Equity
Up (+ $15.00) 0.1 $1.50

Neutral  ($0.00) 0.3 $0.00
Down (– $5.00) 0.6 -$3.00

Σ = –$1.50

Price movement Probability Expected ∆ Equity 
Up (+ $30.00) 0.1 $3.00 

Neutral ($0.00) 0.3 $0.00 
Down (– $5.00) 0.6 –$3.00 

Σ = $0.00 
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Instance (iii):  (+) ∆S = $60.00 
 
 

Table (i).3 
 
                

Event space: D  

Strategy: A2 (Long underlying asset + long put) 
 
 
 Instance (i): (−) ∆S = $5.00, (+) ∆S = $15.00 
 
                

Table (i).4 
 
 
 
 

Table (i).5 
 
 
Note that since the put option price has to be accounted for, the actual (+) ∆S in this case 
is $15 - $6.99 = $8.01 and the actual (–) ∆S is ($55 – $50) – $6.99 = – $1.99.   
 
 
           

Price movement Probability Expected ∆ Equity
Up (+ $60.00) 0.1 $6.00

Neutral ($0.00) 0.3 $0.00
Down (– $5.00) 0.6 –$3.00

Σ = $3.00

Simulated put option price $6.99
Variance  ($2)11.63
Simulated asset value $48.95
Variance ($2)43.58

Price movement Probability Expected ∆ Equity  Expected excess equity Utility 
index

Up (+ $8.01) 0.1 $0.801
Neutral (–$1.99) 0.3 –$0.597
Down (– $1.99) 0.6 –$1.194

 Σ = –$0.99 $0.51  ≈ 0.333
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Instance (ii): (+) ∆S = $30.00 
 
Simulated put price $6.75
Variance  ($2)13.33
Simulated asset value $52.15
Variance  ($2)164.78

Table (i).6 
 
 
 

Table (i).7 
 
 
 
Instance (iii): (+) ∆S = $60.00 
 
 
                
Simulated put price $6.71 
Variance ($2)12.38 
Simulated asset value $56.20 
Variance ($2)520.77 

Table (i).8 
 
 
 
 

Table (i).9 

 

 

Price movement Probability Expected ∆ Equity Expected excess equity Utility index
Up (+ $23.25) 0.1 $2.325

Neutral (– $1.75) 0.3 –$0.525
Down (– $1.75) 0.6 –$1.05

Σ = $0.75 $0.75  ≈ 0.666

Price movementProbability Expected ∆ Equity  Expected excess equity Utility index
Up (+ $53.29) 0.1 $5.329

Neutral (– $1.71) 0.3 –$0.513
Down (– $1.71) 0.6 –$1.026

Σ = $3.79 $0.79  ≈ 0.999
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Figure (i).1 

 

     The utility function as obtained above is convex in probability space D, which 

indicates that the protective strategy can make the investor risk-loving even when the 

market is expected to move in an adverse direction, as the expected payoff from the put 

option largely neutralizes the likely erosion of security value at an affordable insurance 

cost! This is in line with the intuitive behavioral reasoning that as investors with a viable 

downside protection will become more aggressive in their approach than they would be 

without it implying markedly lowered risk aversion for the investors with insurance. 

 

 

 

 

 

 

 

 

Utility Index Function (Event Space D) y = 24.777x2 - 29.831x + 9.1025

0.000 0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

Expected excess equity
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Event space: N  

Strategy: A1 (Long underlying asset) 
 
 
 
                           Instance (i):  (–) ∆S = $5.00, (+) ∆S = $15.00 
 
                            

Table (i).10 
 
 

 Instance (ii):  (+) ∆S = $30.00 
 
                            

Table (i).11 
                
 
 
 
 
 
 
 
 
 
 
 

Price movement Probability Expected ∆ Equity
Up (+ $15.00) 0.2 $3.00

Neutral  ($0.00) 0.6 $0.00

Down (– $5.00) 0.2 –$1.00

Σ = $2.00

Price movement Probability Expected ∆ Equity

Up (+ $30.00) 0.2 $6.00

Neutral ($0.00) 0.6 $0.00

Down (– $5.00) 0.2 –$1.00

Σ = $5.00
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Instance (iii):  (+) ∆S = $60.00 
 

Table (i).12 
 

                
 

Event space: N  

Strategy: A2 (Long underlying asset + long put) 
 
 
 
Instance (i): (−) ∆S = $5.00, (+)∆S = $15.00 
 
               

Table (i).13 
 
 
 
 
 

Table (i).14 
 
 
 
 

Price movement Probability Expected ∆ Equity
Up (+ $60.00) 0.2 $12.00

Neutral ($0.00) 0.6 $0.00
Down (– $5) 0.2 –$1.00

Σ = $11.00

Simulated put price $4.85
Variance  ($2)9.59
Simulated asset value $51.90
Variance  ($2)47.36

Price movementProbability Expected ∆ Equity  Expected excess 
equity

Utility 
index

Up (+ $11.15) 0.2 $2.23
Neutral (+ $0.15) 0.6 $0.09

Down (+ $0.15) 0.2 $0.03
Σ = $2.35 $0.35  ≈ 0.999
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Instance (ii): (+) ∆S = $30.00 
 
                    
Simulated put price $4.80
Variance  ($2)9.82
Simulated asset value $55.20
Variance  ($2)169.15

Table (i).14 
 
 

Table (i).15 
 
 
 
 
Instance (iii): (+) ∆S = $60.00 
 
                

Table (i).16 
 
 
 
 

Table (i).17 
 
 
 
 

Price movementProbabilityExpected ∆ Equity  Expected excess equity Utility index 
Up (+ $25.20) 0.2 $5.04

Neutral (+ $0.20) 0.6 $0.12
Down (+ $0.20) 0.2 $0.04

 

Σ = $5.20 $0.20  ≈ 0.333 

Simulated put price $4.76
Variance  ($2)8.68
Simulated asset value $60.45
Variance  ($2)585.40

Price movement Probability Expected ∆ EquityExpected excess equity Utility index 
Up (+ $55.24) 0.2 $11.048

Neutral (+ $0.24) 0.6 $0.144
Down (+ $0.24) 0.2 $0.048

Σ = $11.24 $0.24  ≈ 0.666
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Figure (i).2 

 

     The utility function as obtained above is concave in probability space N, which 

indicates that the insurance provided by the protective strategy can no longer make the 

investor risk-loving as the expected value of the insurance is offset by the cost of buying 

the put! This is again in line with intuitive behavioral reasoning because if the market is 

equally likely to move up or down and more likely to stay unmoved the investor would 

deem himself or herself better off not buying the insurance because in order to have the 

insurance i.e. the put option it is necessary to pay an out-of-pocket cost, which may not 

be offset by the expected payoff from the put option under the prevalent market scenario. 

 

Event space: U  

Strategy: A1 (Long underlying asset) 
 
                       
    
 
Instance (i):  (–) ∆S = $5.00, (+) ∆S = $15.00 
                                    

Utility Index Function (Event Space N)
y = -35.318x2 + 23.865x - 3.0273

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400

Expected excess equity
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Table (i).18 
 

 
Instance (ii):  (+) ∆S = $30.00 
 

Table (i).19 
 
 
Instance (iii):  (+) ∆S = $60.00 
 
                           

Table (i).20 
                
 
 
 

Price movement Probability Expected ∆ Equity

Up (+ $15.00) 0.6 $9.00

Neutral  ($0.00) 0.3 $0.00

Down (– $5.00) 0.1 –$0.50

Σ = $8.50

Price movement Probability Expected ∆ Equity 
Up (+ $30.00) 0.6 $18.00 

Neutral ($0.00) 0.3 $0.00 
Down (– $5.00) 0.1 –$0.50 

Σ = $17.50 

Price movement Probability Expected ∆ Equity

Up (+ $60.00) 0.6 $36.00

Neutral ($0.00) 0.3 $0.00

Down (– $5) 0.1 –$0.50

Σ = $35.50
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Event space: U  

Strategy: A2 (Long underlying asset + long put) 
 
 
 
 
 Instance (i): (−) ∆S = $5.00, (+) ∆S = $15.00 
 
 
                    

Table (i).21 
 
 
 
 
 
 

Table (i).22 
 
 
 
 
 Instance (ii): (+) ∆S = $30.00 
 
 
                    
Simulated put price $2.14
Variance  ($2)10.23
Simulated asset value $69.00
Variance  ($2)228.79

Table (i).23 
 
 

Simulated put price $2.28 
Variance  ($2)9.36 
Simulated asset value $58.60 
Variance  ($2)63.68 

Price movementProbabilityExpected ∆ EquityExpected excess equity Utility index
Up (+ $12.72) 0.6 $7.632

Neutral (+ $2.72) 0.3 $0.816
Down (+ $2.72) 0.1 $0.272

Σ = $8.72 $0.22  ≈ 0.333
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Table (i).24 
 
 
 
Instance (iii): (+) ∆S = $60.00 
 
 
                    
Simulated put price $2.09
Variance  ($2)9.74
Simulated asset value $88.55
Variance  ($2)864.80

Table (i).25 
 
 
 
 
 

Table (i).26 
 
 

Figure (i).3 

Price movementProbabilityExpected ∆ EquityExpected excess equity Utility index
Up (+ $27.86) 0.6 $16.716

Neutral (+ $2.86) 0.3 $0.858
Down (+ $2.86) 0.1 $0.286

Σ = $17.86 $0.36  ≈ 0.666

Price movement Probability Expected ∆ Equity Expected excess equity Utility index 
Up (+ $57.91) 0.6 $34.746

Neutral (+ $2.91) 0.3 $0.873
Down (+ $2.91) 0.1 $0.291

 

Σ = $35.91 $0.41  ≈ 0.999 

Utility Index Function (Event Space U)
y = 22.534x2 - 10.691x + 1.5944

0.000 0.050 0.100 0.150 0.200 0.250 0.300 0.350 0.400 0.450

Expected excess equity
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     In accordance with intuitive, behavioral reasoning the utility function is again seen to 

be convex in the probability space U, which is probably attributable to the fact that while 

the market is expected to move in a favourable direction the put option nevertheless 

keeps the downside protected while costing less than the expected payoff on exercise 

thereby fostering a risk-loving attitude in the investors as they get the best of both worlds. 

 

     Note that particular values assigned to the utility indices won’t affect the essential 

mathematical structure of the utility curve – but only cause a scale shift in the 

parameters. For example, the indices could easily have been taken as (0.111, 0.555 and 

0.999) - these assigned values should not have any computational significance as long as 

all they all lie within the conventional interval (0, 1]. Repeated simulations have shown 

that the investor would be considered extremely unlucky to  obtain an excess return less 

than the minimum excess return obtained or extremely lucky to get an excess return more 

than the maximum excess return obtained under each of the event spaces. Hence, the 

maximum and minimum expected excess equity within a particular event space should 

correspond to the lowest and highest utility indices and the utility derived from the 

median excess equity should then naturally occupy the middle position.  As long as this is 

the case, there will be no alteration in the fundamental mathematical form of the 

investor’s utility functions no matter what index values are assigned to his or her utility 

from expected excess equity.  
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B. Extrapolating the ranges of investor’s risk aversion within each probability space: 

 

     For a continuous, twice-differentiable utility function u (x), the Arrow-Pratt measure 

of absolute risk aversion (ARA) is given as follows: (Arrow, 1971; Pratt and Zeckhauser, 

1987) 

 

                                          λ (x) = - [d2u (x)/dx2] [du (x)/dx]-1                                               … (i.1) 

 

     λ (x) > 0 if u is monotonically increasing and strictly concave as in case of a risk-

averse investor having u’’ (x) < 0. Obviously, λ (x) = 0 for the risk-neutral investor with 

a linear utility function having u’’ (x) = 0 while λ (x) < 0 for the risk-loving investor with 

a strictly convex utility function having u’’ (x) > 0 (Chiang, 1984). 

 

Case I: Probability Space D:  

 

     u (x) = 24.777x2 – 29.831x + 9.1025, u’ (x) = 49.554x – 29.831 and u’’(x) = 49.554. 

Thus λ (x) = – 49.554 / (49.554x – 29.831). Therefore, given the convex utility function, 

the defining range is λ (x) < 0 i.e. (49.554x – 29.831) < 0 or x < 0.60199.  

 

Case II: Probability Space N:  

 

     u (x) = -35.318 x2 + 23.865x – 3.0273, u’ (x) = -70.636x + 23.865 and u’’(x) = –

70.636.  Thus, λ (x) = – [–70.636 / (–70.636x + 23.865)] = 70.636 / (–70.636x + 23.865). 
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Therefore, given the concave utility function, the defining range is λ (x) > 0, i.e. we have 

the denominator (-70.636x + 23.865) > 0 or x > 0.33786.  

 

Case III: Probability Space U:  

 

     u (x) = 22.534x2 – 10.691x + 1.5944, u’ (x) = 45.068x – 10.691 and u’’(x) = 45.068. 

Thus λ (x) = – 45.068 / (45.068x – 10.691). Therefore, given the convex utility function, 

the defining range is λ (x) < 0 i.e. (45.068x – 10.691) < 0 or x < 0.23722. 

 

     Note that these ranges as evaluated above will however depend on the parameters of 

the utility function and will therefore be different for different investors according to the 

values assigned to his or her utility indices corresponding to the expected excess equity 

(Goldberger, 1987). 

 

     In general, if we have a parabolic utility function u (x) = a + bx – cx2, where c > 0 

ensures concavity, then we have u’ (x) = b – 2cx and u’’ (x) = -2c. The Arrow-Pratt 

measure is given by λ (x) = 2c / (b–2cx). Therefore, for λ (x) ≥ 0, we need b ≥ 2cx, thus it 

can only apply for a limited range of x. Notice thatλ’ (x) ≥ 0 up to where x = b/2c. 

Beyond that, marginal utility is negative - i.e. beyond this level of equity, utility declines. 

One more implication is that there is an increasing apparent unwillingness to take risk as 

their equity increases, i.e. with larger excess equity investors are less willing to take risks 

as concave, parabolic utility functions exhibit increasing absolute risk aversion (IARA).  
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Appendix (ii) 
 
 
Genetic Algorithm demonstration of the biological basis of Black-Scholes type 

expected utility functions 

 

A. Formal definitions: 

 

     A geometric Brownian motion is assumed to be the ubiquitous stochastic diffusion 

process driving asset prices and performances in organized financial markets.  The 

discrete time version of this model, as is relevant in most computational applications, is 

given as follows: 

 

                                 ∆S/S = µ∆t + ε√(σ2∆t)                                                           ... (ii.1) 

 

     The variable ∆S is the change in the asset price S and ε is a random sample from the 

standard normal distribution N (0, 1). The expected return per unit of time on the asset is 

denoted as µ and the variance of the asset price is denoted as σ2.  ∆S/S is actually the 

proportional return provided by the asset in a very short interval of time ∆t. The term µ∆t 

then stands for the expected value of this return, which is deterministic and ε√(σ2∆t) is 

then the stochastic component of this return.  

 

     Therefore the variance of the return on the asset is given by σ2∆t. That is to say ∆S/S 

follows a normal distribution with mean µ∆t and variance σ2∆t. Thus a path for an asset 
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price or performance can be simulated by repeated sampling from N (µ∆t, σ2∆t). This is 

exactly how the Monte Carlo simulation model we have used in this study was designed. 

Since we have used monthly rebalancing, we have ∆t = 1/12 i.e. ∆t ≈ 0.0833. The asset 

performances S1 and S2 have been generated by repeatedly sampling from N (0.0167, 

0.0075) and N (0.0150, 0.0033) respectively and averaging. As the performances of the 

two risky assets are correlated, the random samples were drawn according to the 

following formula using Excel’s inbuilt RAND () function: 

 

r1 = RAND (); and 

           r2 = r1 + RAND () * (1 – 0.50) 2 = r1 + RAND () * 0.502                                          ... (ii.2) 

 

 

B. Mathematical derivation of the size of Gn: 
 
 
     According to our haploid genetic algorithm reproduction and crossover functions, the 

size of the nth generation i.e. the number of chromosomes in the population at the end of 

the nth generation is given by the following first-order, linear difference equation: 

 

                         Gn = Gn – 1 + 2 (Gn – 1 – 1) = 3 Gn – 1 – 2                                         ... (ii.3) 

 

 

     If x initial number of chromosomes are introduced at n = 0, we have G0 = x. Then, 

obviously, G1 = x + 2(x – 1) = 3x – 2 = 31 (x – 1) + 1. Extending the recursive logic to G2 
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and G3 we get G2 = 9x – 8 = 32 (x – 1) + 1 and G3 = 27x – 26 = 33 (x – 1) + 1. Therefore, 

extending to Gt we can write the following relation: 

 

                        Gt = 3t (x – 1) + 1                                                                            ... (ii.4) 

 

     Therefore, Gt+1 = 3t+1 (x – 1) + 1. But Gt+1 = 3Gt – 2. Substituting for Gt we thereby 

get, Gt+1 = 3{3t (x – 1) + 1} – 2 = 3t+1 (x – 1) + 3 – 2 = 3t+1 (x – 1) + 1. Therefore the case 

is proved for Gt+1. But we have already proved it for G1, G2 and G3. Therefore, by the 

principle of mathematical induction, the general formula is derived as follows: 

 

                                             Gn = 3n (x – 1) + 1                                                      ... (ii.5) 

 

     We can verify that our genetic algorithm model has indeed reproduced this Gn number 

of chromosomes in each generation for an initial input of G0 = x = 5. Accordingly, our 

algorithm reproduced 13, 37 and 109 chromosomes for n = 1, 2, 3.  

 

C. Computational output of the GA performance: 

 

     For an initial input of $1, apportioned at t = 0 as 45% between S1 and S2 and 10% for 

S0, we have constructed five replicating portfolios according to a simple rule-based logic: 

k% of funds are allocated to the observed best performing risky asset and the balance (90 

– k) % to the other risky asset (keeping the portfolio self-financing after the initial 

investment) at every monthly re-balancing point. We have reduced k by 10% for each 
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portfolio starting from 90% and going down to 50%. As is shown in the following 

Figures III.1 – III.5, this simple hedging scheme performs quite well over the lock-in 

period when k = 90%. But the performance falls away steadily as k is reduced every time. 

Evaluation of the fitness criterion corresponding to choices of k is shown in Table II.1. 

 

 

 

 

 

Figure (ii).1 

 

 

 

 

 

Figure (ii).2 

 

 

 

 

 

Figure (ii).3 
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Figure (ii).4 

 

 

 

 

 

Figure (ii).5 

 

Generation Number of chromosomes 80% < k* <= 90% % in range (fitness) 
0  5  1  20% 
1  13  4  31% 
2  37  19  51% 
3  109  61  56% 

Table (ii).1 
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D. Haploid Genetic Algorithm program code in Borland C Release 5.02: 

 

#include<stdio.h> /* Standard Header*/ 
#include<stdlib.h>/* Standard Header*/ 
#include<conio.h> /* Standard Header*/ 
#include<string.h>/* Binary Array - string */ 
#include<math.h> 
 
#define DELAY 1500000000 
#define MAX 32         /* 32 Bit MAX only 32 elements total */ 
#define SLICER 8 
#define CAPACITY 1000 
 
void crossover(int locus, int seed, int children, char daughter[][MAX]); 
void reconvert(char new_str1[][MAX], char new_str2[][MAX], char daughter[][MAX], 
int children); 
int reproduction (float fitness[CAPACITY], int init_val, int r); 
int randomizer1 (int seed, float tot_fitness); 
int randomizer2 (int mute_seed, int children); 
 
void main() 
{ 
 char bit_str[CAPACITY][MAX], daughter[CAPACITY][MAX]; 
 int time_count, reply, b, init_val, j, input, count, gap, seed, children; 
 int locus, choice[CAPACITY], simcount, r, index, rowcount; 
 int binum [CAPACITY][MAX], chromosome[CAPACITY]; 
 int chrom_code[CAPACITY], chrom_count[CAPACITY]; 
 float fitness[CAPACITY], tot_fitness; 
 
 printf("*** UNIVARIATE GENETIC OPTIMIZATION PROGRAM IN BORLAND C 
***"); 
 printf("\n\n\n"); 
 printf(“Copiright:  Sukanto Bhattacharya  Date: 18 July 2003"); 
 time_count = 0; 
 do 
 { 
  time_count++; 
 } while (time_count <= DELAY); 
 reply = 1; 
 while(reply == 1||reply == 1) 
 { 
  clrscr(); 
  printf("Enter initial number of chromosomes : "); 
  scanf("%d", &init_val); 
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  printf("\n\n"); 
  printf("Enter number of offsprings to be reproduced : "); 
  scanf("%d", &children); 
  printf("\n\n"); 
  printf ("Enter the crossover locus : "); 
  scanf("%d", &locus); 
  clrscr(); 
  tot_fitness=0; 
  rowcount = 0; 
  for(b=1; b<=init_val; b++) 
  { 
   printf ("\n\n"); 
   printf("Enter chromosome value %d in decimal for encoding : ", b); 
   scanf ("%d", &chromosome[b]); 
   printf ("\n"); 
   printf("Enter the fitness value associated with chromosome %d : ", b); 
   scanf("%f", &fitness[b]); 
   tot_fitness = tot_fitness + fitness[b]; 
   rowcount++; 
   if(rowcount > 5) 
   { 
    clrscr(); 
    rowcount = 0; 
   } 
  } 
  clrscr(); 
  for(b=1; b <= init_val; b++) 
  { 
   input = chromosome[b]; 
   count=0; 
   do 
   { 
    j = input%2; 
    binum[b][count] = j; 
    if(binum[b][count]==1) 
     bit_str[b][count]='1'; 
    else 
     bit_str[b][count]='0'; 
    input = input/2; 
    count++; 
   }while (input > 0); 
   for(gap=0; gap<MAX; gap++) 
   { 
    if(bit_str[b][gap]!='0'&& bit_str[b][gap]!='1') 
     bit_str[b][gap]='0'; 
   } 
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  } 
  printf("Enter seed value for random number generation : "); 
  scanf("%d", &seed); 
  clrscr(); 
  simcount = 1; 
  for(b=1; b <= init_val; b++) 
  { 
   chrom_code[b]= b; 
   chrom_count[b]=0; 
  } 
  do 
  { 
   r = randomizer1(seed, tot_fitness); 
   if(r == 0) 
    r = 1; 
   seed = r; 
   choice[simcount] = reproduction(fitness, init_val, r); 
   for (b=1; b <= init_val; b++) 
   { 
    if(choice[simcount] == chrom_code[b]) 
     chrom_count[b]++; 
   } 
   for (gap=0; gap < MAX; gap ++) 
   { 
    index = choice[simcount]; 
    daughter[simcount][gap]= bit_str[index][gap]; 
   } 
   simcount++; 
  }while (simcount <= children); 
  rowcount = 0; 
  for(b=1; b <= init_val; b++) 
  { 
   printf("\n"); 
   printf("%d of chromosome %d selected for new generation", chrom_count[b], b); 
   rowcount++; 
   if (rowcount > 5) 
   { 
    printf("\n\n"); 
    printf("Press any key to continue :"); 
    getch(); 
    gotoxy(1, 1); 
    clrscr(); 
    rowcount = 0; 
   } 
  } 
  crossover(locus, seed, children, daughter); 
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  printf("\n\n"); 
  printf("Do you want another run? (Yes -> 1/No -> 0) :"); 
  scanf ("%d", &reply); 
 } 
} 
 
/* Random Number Generation */ 
 
int randomizer1 (int seed, float tot_fitness) 
{ 
 int a1, c1, result1, m; 
 
 a1 = 16807; 
 c1 = 0; 
 m = floor(tot_fitness); 
 result1 = (a1*seed + c1)%m; 
 return result1; 
} 
 
int randomizer2 (int mute_seed, int children) 
{ 
 int a2, c2, result2; 
 
 a2 = 16807; 
 c2 = 0; 
 result2 = (a2*mute_seed + c2)%children; 
 return result2; 
} 
/* Reproduction function */ 
 
int reproduction (float fitness[CAPACITY], int init_val, int r) 
{ 
 int b1, t, z, c[CAPACITY], select, increment; 
 
 for(b1=1; b1 <= init_val; b1++) 
  c[b1] = b1; 
 t = 0; 
 for (z=1; t<r; z++) 
 { 
  increment = floor(fitness[z]); 
  t = t + increment; 
 } 
 select = c[z-1]; 
 return select; 
} 
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/* Crossover function */ 
 
void crossover(int locus, int seed, int children, char daughter[][MAX]) 
{ 
 int gap2, b2, position, o, k, mute_seed, mutant[CAPACITY], rowcount; 
 int number_mutant, j, pop_count; 
 char new_str1[CAPACITY][MAX], new_str2[CAPACITY][MAX]; 
 
 for (o=1; o <= children; o++) 
 { 
  gap2=0; 
  do 
  { 
   new_str1[o][gap2]='0'; 
   new_str2[o][gap2]='0'; 
   gap2++; 
  } while (gap2 < MAX); 
 } 
 rowcount = 1; 
 k=1; 
 printf("\n\n\n"); 
 printf ("Child chromosomes after crossover between selected parents :"); 
 for(b2=1; b2 <= children-1; b2++) 
 { 
  for(position = MAX; position > locus; position--) 
   new_str1[b2][position]= daughter[k][position]; 
 
  while (position>=0) 
  { 
   new_str1[b2][position]= daughter[k+1][position]; 
   position--; 
  } 
  for(position = MAX; position > locus; position--) 
   new_str2[b2][position]= daughter[k+1][position]; 
  while (position>=0) 
  { 
   new_str2[b2][position]= daughter[k][position]; 
   position--; 
  } 
  printf("\n\n"); 
  gap2=MAX; 
  do 
  { 
   printf ("%c", new_str1[b2][gap2-1]); 
   gap2--; 
  } while (gap2 > 0); 
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  printf("\n\n"); 
  gap2=MAX; 
  do 
  { 
   printf ("%c", new_str2[b2][gap2-1]); 
   gap2--; 
  } while (gap2 > 0); 
  k++; 
  rowcount++; 
  if(rowcount > 3) 
  { 
   printf("\n\n"); 
   printf("Press any key to continue :"); 
   getch(); 
   gotoxy(1, 1); 
   clrscr(); 
   rowcount = 0; 
  } 
 } 
 printf("\n\n\n"); 
 printf("Enter the maximum number of mutants for next generation : "); 
 scanf("%d", &number_mutant); 
 gotoxy(1, 1); 
 clrscr(); 
 mute_seed = seed; 
 for(j=1; j <= children; j++) 
  mutant[j]=0; 
 j=1; 
 while (j <= number_mutant) 
 { 
  mutant[j] =  randomizer2(mute_seed, children); 
  mute_seed = mutant[j]; 
  if(mute_seed == 0) 
   mute_seed = 1; 
  j++; 
 } 
 pop_count=children + 2*(children - 1); 
 printf("%d chromosomes belonging to current population", pop_count); 
 printf("\n\n\n"); 
 if(number_mutant > 0) 
 { 
  for(j=1; j<= number_mutant; j++) 
  { 
   if(mutant[j]!=0) 
   { 
    printf("\n"); 
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    printf("Chromosome selected for mutation: %d", mutant[j]); 
   } 
  } 
 } 
 printf ("\n\n\n"); 
 printf ("Press any key to generate output :"); 
 getch(); 
 gotoxy(1, 1); 
 clrscr(); 
 for (b2=1; b2 <= children; b2++) 
 { 
  for(j=1; j <= number_mutant; j++) 
  { 
   if(b2==mutant[j]) 
   { 
    gap2=MAX/SLICER; 
    do 
    { 
     if(daughter[b2][gap2-1]!='0') 
      daughter[b2][gap2-1] = '0'; 
     else 
      daughter[b2][gap2-1] = '1'; 
     gap2--; 
    }while (gap2 > 0); 
   } 
  } 
 } 
 gotoxy(1, 1); 
 clrscr(); 
 reconvert(new_str1, new_str2, daughter, children); 
 printf ("\n\n\n"); 
 printf ("Press any key to exit :"); 
 getch(); 
 clrscr(); 
} 
void reconvert(char new_str1[][MAX], char new_str2[][MAX], char daughter[][MAX], 
int children) 
{ 
 char binary1[CAPACITY][MAX], binary2[CAPACITY][MAX], 
binary3[CAPACITY][MAX]; 
 int i, z, dec1[CAPACITY], dec2[CAPACITY], dec3[CAPACITY], power[MAX]; 
 
 for(z=1; z<=children; z++) 
 { 
  dec1[z]=0; 
  for(i=0; i<MAX; i++) 
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   binary1[z][i] = daughter[z][i]; 
 } 
 for (z=1; z<=children; z++) 
 { 
  dec2[z]=0; 
  dec3[z]=0; 
  for(i=0; i<MAX; i++) 
  { 
   binary2[z][i] = new_str1[z][i]; 
   binary3[z][i]= new_str2[z][i]; 
  } 
 } 
 for (z=1; z<=children; z++) 
 { 
  for (i=MAX; i > 0; i--) 
  { 
   power[i]= (binary1[z][MAX-i]=='1'? 1:0)* pow(2, MAX-i); 
   dec1[z]= dec1[z]+ power[i]; 
  } 
 } 
 for (z=1; z<=children; z++) 
 { 
  for (i=MAX; i > 0; i--) 
  { 
   power[i]= (binary2[z][MAX-i]=='1'? 1:0)* pow(2, MAX-i); 
   dec2[z]= dec2[z]+ power[i]; 
  } 
 } 
 for (z=1; z<=children; z++) 
 { 
  for (i=MAX; i > 0; i--) 
  { 
   power[i]= (binary3[z][MAX-i]=='1'? 1:0)* pow(2, MAX-i); 
   dec3[z]= dec3[z]+ power[i]; 
  } 
 } 
 printf ("Decimal values of chromosomes in current population are as follows :"); 
 printf ("\n\n"); 
 for (z=1; z<=children; z++) 
  printf ("\n %d", dec1[z]); 
 for (z=1; z<=children-1; z++) 
  printf ("\n %d", dec2[z]); 
 for (z=1; z<=children-1; z++) 
  printf ("\n %d", dec3[z]); 
} 
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Appendix (iii) 

 

Computational exposition of the proposed information theoretic utility measure 

scheme for a multi-asset, capital-guaranteed financial structured product 

 

     Here we have considered actual historical market data to construct a three-asset, 

capital-guaranteed financial structured product. The three risky assets are gold futures, 

the Lehman Brothers Growth Fund and a well-diversifed portfolio of equities proxied by 

the S&P500 index. The return on the risk-free asset is proxied by the 3-month T bill rate. 

 

     The periodicity of the data is monthly and the span is two years – from 02/02/01 to 

03/02/03. A notional amount of US$100,000 is invested on 02/02/01 in a dynamically 

managed structured product with a floor of $90,000. The risk-free rate is an annualized 

2.40% determined as the average observed rate on 3-month T bills for the holding period.  

 

 

 

 

 

 

 

Figure (iii).1 
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Figure (iii).2 

 

 

 

 

 

 

 

 

 

Figure (iii).3 

 

 

Correlation Matrix S&P500 Index Lehman Brothers Growth Fund  Gold Futures 
S&P500 Index 1  0.862887415  -0.19457 
Lehman Brothers 
Growth Fund 0.862887415  1  -0.34702 
Gold Futures -0.194566788  -0.347019467  1 

Table (iii).1 
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     The overall market during the period under consideration was strongly bearish with 

the average monthly return on S&P 500 index at a miserable -1.61% and that on the 

Lehman Brothers Growth Fund was not much better at -1.49%! Gold futures performed 

reasonably well generating a monthly average return of 1.20%.  

 

     Relating to Chapter 4, the product we have constructed is an 8-bit financial structured 

product consisting of three risky assets and one risk-free asset. We employ a mechanism 

of dynamic threshold management, which has become quite a popular investment vehicle 

with some of the larger commercial banks in Europe and also starting to make an entry of 

late into the Australian financial market.  

  

     The commonest threshold management mechanism goes by the name of constant 

proportion portfolio insurance (or CPPI), which expose a constant multiple (hence the 

name CPPI) of a cushion over an investor’s floor or “insured” value to the performance 

of the risky asset. For example, an investor with a $100 million portfolio, a floor of $90 

million and a constant multiple of 5 will allocate $50 million [= 5 x ($100 m - $90 m)] to 

the risky asset and the balance $50 million to the riskfree asset. The investor will 

rebalance the exposures as the portfolio value changes. 

 

     Unlike other portfolio insurance strategies, CPPI does not require the investor to 

specify a finite investment horizon. It has further been mathematically demonstrated 

(Black and Jones, 1987) that there is no “dominance” between CPPI and OBPI for the 

standard criteria of portfolio choices. It has also been shown that the CPPI is in fact 
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algebraically generalizable to the OBPI by making the multiple constant some function of 

the Brownian price path of the underlying risky component (Bertrand and Prigent, 2003). 

 

CPPI Portfolio Insurance Scheme 

Date S&P500 
Lehman 

Bros. GC00 Exposure Cash Portfolio Floor Cushion 
2-Feb-01  6667  6667  6667  20000  80000  100000  90000  10000 
   5823  6257  6511  18592  80160  98752  90000  8752 
2-Mar-01  5483  5891  6130  17504  81248  98752  90000  8752 
   4969  5183  5977  16129  81411  97540  90000  7540 
2-Apr-01  4645  4846  5588  15079  82460  97540  90000  7540 
   5226  5572  5785  16583  82625  99208  90000  9208 
2-May-01  5803  6188  6424  18416  80792  99208  90000  9208 
   5724  6382  6477  18584  80954  99537  90000  9537 
1-Jun-01  5875  6551  6648  19074  80463  99537  90000  9537 
   5813  6528  6700  19042  80624  99665  90000  9665 

2-Jul-01  5902  6627  6802  19331  80335  99665  90000  9665 
   5847  6318  6774  18939  80495  99435  90000  9435 
2-Aug-01  5825  6295  6749  18869  80565  99435  90000  9435 
   5383  5831  6831  18045  80727  98771  90000  8771 
4-Sep-01  5233  5669  6641  17543  81229  98771  90000  8771 
   4912  4953  7080  16945  81391  98336  90000  8336 
2-Oct-01  4833  4873  6966  16672  81664  98336  90000  8336 
   5093  5290  6720  17102  81827  98930  90000  8930 
2-Nov-01  5318  5524  7017  17859  81070  98930  90000  8930 
   5724  5784  6945  18452  81232  99685  90000  9685 
6-Dec-01  6008  6071  7290  19369  80315  99685  90000  9685 
   5935  6193  7324  19452  80476  99928  90000  9928 
2-Jan-02  6058  6322  7476  19856  80072  99928  90000  9928 
   5954  5873  7677  19503  80232  99736  90000  9736 
1-Feb-02  5944  5863  7664  19471  80264  99736  90000  9736 
   5962  5796  7981  19740  80425  100165  90000  10165 
1-Mar-02  6140  5970  8219  20329  79835  100165  90000  10165 
   6026  6059  8453  20538  79995  100533  90000  10533 
2-Apr-02  6181  6215  8670  21067  79467  100533  90000  10533 
   5803  5659  8715  20177  79626  99803  90000  9803 
2-May-02  5639  5498  8469  19606  80197  99803  90000  9803 
   5382  4974  8977  19333  80358  99691  90000  9691 
3-Jun-02  5395  4986  8999  19381  80309  99691  90000  9691 
   4845  4308  8592  17745  80470  98215  90000  8215 

2-Jul-02  4486  3989  7956  16430  81785  98215  90000  8215 
   4232  3797  7822  15851  81948  97799  90000  7799 
2-Aug-02  4164  3736  7698  15598  82201  97799  90000  7799 
   4234  3804  7844  15882  82365  98247  90000  8247 
3-Sep-02  4397  3951  8146  16495  81753  98247  90000  8247 
   4173  3889  8374  16436  81916  98352  90000  8352 
2-Oct-02  4241  3953  8511  16705  81648  98352  90000  8352 
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   4586  4386  8416  17387  81811  99198  90000  9198 
1-Nov-02  4852  4640  8904  18396  80802  99198  90000  9198 
   5005  4930  8884  18819  80964  99782  90000  9782 
2-Dec-02  5203  5125  9236  19564  80218  99782  90000  9782 
   5007  4630  10015  19651  80378  100030  90000  10030 
2-Jan-03  5111  4726  10222  20059  79970  100030  90000  10030 
   4844  4550  10937  20331  80130  100461  90000  10461 
3-Feb-03  4984  4682  11255  20922  79539  100461  90000  10461 

Table (iii).2 

 

     In the CPPI scheme we have depicted above, the constant multiple is 2 and the floor is 

$90,000. The terminal portfolio value on 3rd February 2003 is seen to be $100,061 

approximately i.e. the capital guarantee mechanism endogenous to our 8-bit structured 

product has just about worked, ensuring that the value of the portfolio at the end of the 

horizon did not go below the initial capital invested.   

 

     Though the holding period return is lower in this case (only about 0.461%) as 

compared to return on the best-performing asset i.e. gold futures, the main benefit of the 

CPPI approach is that with a constant multiple of k > 0, the investor obtains a higher 

participation in the market component and therefore, is afforded an opportunity to reap a 

proportionately higher reward if and when one of the risky assets within the portfolio 

starts to perform really well over a period of time. This flexibility is not offered by most 

of the simple capital-guarantee mechanisms like the zero-coupon bond scheme.  
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Figure (iii).4 
  
 

     The constant multiple and the terminal portfolio value were found to have a negative 

linear relationship during the period under consideration which is intuitively quite 

apparent given the rather poor performance of the three risky assets over that period. In 

practical terms, the holding period of two years we have considered here is a tad too short 

and most capital-guaranteed structured products in the markets are offered for a holding 

period of five years or more. The longer the holding period the higher is the probability 

of the best performing asset being any one of the risky assets thereby implying a higher 

probability of strong positive returns over and above the risk-free rate of return.  

 

     In the actual market data we have used here, the ideal investment would have been to 

invest everything in gold futures which would have generated a holding period return of 

about 33%! However this return cannot be obtained realistically as it calls for a perfect 

foresight. But the nature of the financial structured product guarantees the investor an 

assured return over the investment horizon anywhere roughly between 0.33% and 33% 

with a zero downside risk! We may verify from III.2 that the CPPI algorithm is striving 

to allocate more funds over time to the best performing asset within the structured 
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product i.e. gold futures but obviously falls short of its target performance as the holding 

period horizon is too short. The rational objective is obviously to get as close possible to 

the upper limit of the return range. The investor’s choice set (related to the number of 

assets within the envelope) then becomes an ideal vehicle for cardinalizing utility. It may 

be argued that a five-year time horizon instead of a two-year one would have provided a 

more comprehensive picture but then again we have treated the utility emanating from an 

effective capital-guarantee mechanism as our primary objective and it was primarily with 

respect to that objective that an overwhelmingly bearish period was chosen as we ideally 

wanted to measure the extrinsic utilty of the portfolio insurance scheme when the capital-

guarantee mechanism is triggered.  

 

     In our numerical example here, if we construct a 4-bit product out of the 8-bit one by 

randomly leaving out one of the three risky assets, we would still have a capital 

guaranteed structure. But there will then be a higher probability that now the maximum 

return the investor could get is no longer 33% but only the 5.06% approximate return 

obtainable by investing all of the $100,000 in the risk-free asset for the period. This is 

because there is a probability of 0.33 that the best performer (i.e. gold futures) could be 

left out! This demonstrates that, in general, higher bit structured products will offer 

greater utility to the investor by expanding their choice set thereby broadening the return 

range. Of course, a trade-off between the increased overheads of having additional assets 

and the benefits of an expanded opportunity set is something open to future exploration. 
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     In a structured product with three underlying risky assets plus one risk-free asset, the 

best performer may be hypothesized to be traceable by a first-order Markov process, 

whereby the best performing asset at time t+1 is dependent on the best performing asset 

at time t. In our numerical illustration, we have the following state-transition matrix: 

 

Transition Matrix S&P500 Lehman Bros. GC00 Risk-free rate 
S&P500 0.0000  1.0000  0.0000  0.0000 
Lehman Bros. 0.1429  0.2857  0.4286  0.1429 
GC00 0.0000  0.1818  0.6364  0.1818 
Risk-free rate 0.0000  0.2000  0.4000  0.4000 

Table (iii).3 

     Then for a one-step Markov process, the extrinsic utilities offered to the investor by 

each of the assets included in this structured product is computable as follows using the 

information theoretic measure of extrinsic utility developed in chapter 6: 

 

H (S&P500) = 㨰 [p (S&P 500) I (S&P 500 | Lehman Bros., GC00, Risk-free rate)] = 0.0416,  

H (Lehman Bros.) = 㨰 [p (Lehman Bros.) I (Lehman Bros.| S&P500, GC00, Risk-free rate)] = 0.250, 

H (GC00) = 㨰 [p (GC00) I (GC00|S&P500, Lehman Bros., Risk-free rate)] = 0.500; and 

H (Risk-free rate) = 㨰 [p (Risk-free rate) I (Risk-free rate|S&P500, Lehman Bros., GC00)] = 0.208 

 

     It is interesting to note that Lehman Brothers Growth Fund actually has a higher extrinsic 

utility than the risk-free rate though on an average although the risk-free rate outperformed the 

Lehman Brothers Growth Fund over the two-year investment period!  This is due to the fact that 

though intrinsic utility of the risk-free rate was higher than that of the Lehman Brothers Growth 

Fund, the latter provided greater element of choice to the investor primarily due to a substantially 

wider range of volatility such that it ended up as the best performer more often compared to the 

risk-free asset though, on an average, it was outperformed by the risk-free rate. 
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