
Bond University
ePublications@bond

Information Technology papers Bond Business School

June 1996

AI Tools for Software Development Effort
Estimation
Gavin Finnie
Bond University, Gavin_Finnie@bond.edu.au

Gerhard E. Wittig
Bond University

Follow this and additional works at: http://epublications.bond.edu.au/infotech_pubs

This Conference Paper is brought to you by the Bond Business School at ePublications@bond. It has been accepted for inclusion in Information
Technology papers by an authorized administrator of ePublications@bond. For more information, please contact Bond University's Repository
Coordinator.

Recommended Citation
Gavin Finnie and Gerhard E. Wittig. (1996) "AI Tools for Software Development Effort
Estimation".Jun. 1996.

http://epublications.bond.edu.au/infotech_pubs/7

http://epublications.bond.edu.au?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/infotech_pubs?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/business?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au/infotech_pubs?utm_source=epublications.bond.edu.au%2Finfotech_pubs%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epublications.bond.edu.au
mailto:acass@bond.edu.au
mailto:acass@bond.edu.au

AI Tools for Software Development Effort Estimation

Gavin FL Finnie and Gerhard E. Wittig
Bond University

Gold Coast, Queensland, Australia

Abstract

Software development involves a number of
interrelated factors which affect development effort
and productivity. Since many of these relationships
are not well understood, accurate estimation of
so&are development time and effort is a dificult
problem. Most estimation models in use or proposed in
the literature are based on regression techniques. This
paper examines the potential of two artijcial
intelligence approaches i.e. artificial neural network
and case-based reasoning for creating development
effort estimation models.

Artijcial neural network can provide accurate
estimates when there are complex relationships
between variables and where the input data is distorted
by high noise levels Case-based reasoning solves
problems by adapting solutions from old problems
similar to the current problem. This research examines
both the performance of back-propagation artificial
neural networks in estimating software development
effort and the potential of case-based reasoning for
development estimation using the same dataset.

Key Words: Function points, Software development,
Artificial neural networks, Case based reasoning

Introduction

Estimating software development effort remains a
complex problem attracting considerable research
attention. Improving the estimation techniques
available to project managers would facilitate more
effective control of time and budgets in software
development. Software development involves a
number of interrelated factors which affect
development effort and productivity. Accurate
forecasting has proved difficult since many of these
relationships are not well understood. Heemsrra [4]
concluded that estimation models have not shown that
they can be used as a reliable estimation tool.

Most estimation models in use or proposed in the

literature are based on regression techniques. This
paper examines the potential of two artificial
intelligence approaches ie. artificial neural networks
and case-based reasoning, in providing the basis for
development effort estimation models. Artificial neural
networks (ANNs) are recognised for their ability to
provide good results when dealing with problems
where there are complex relationships between inputs
and outputs, and where the input data is distorted by
high noise levels [14]. The software development
environment from which development effort estimates
are generated, is characterised by these attributes.
Although the potential for predictive accuracy is good,
neural networks lack an explanation capability and do
not provide an environment for direct user adaptation
of results.

Case-based reasoning (CBR) [15] is a problem
solving technique which solves new problems by
adapting solutions that were used to solve old
problems. CBR retrieves one or more cases similar to
the current problem and attempts to modify these to fit
the current problem parameters. In software
development effort estimation, each case could be a
previous software development while the current
problem is one of extracting a suitable estimate for the
current project. Case-based reasoners can justify
decisions on the basis of the previous cases used in
solving a problem.

This research examines the performance of back-
propagation artificial neural networks in estimating
software development effort by evaluating the
performance of ANN effort estimation models on
actual project data. In addition the potential of CBR
for development effort estimation is investigated using
the same project data.

Estimation model performance

Several researchers have evaluated a range of
software effort estimation models. The problem has
been shown to be a complex issue and results have in
general not been encouraging.

Kemerer [9] performed an empirical validation of
four algorithmic models (SLIM, COCOMO, Estimacs

346
O-8186-7379-6/96 $05.00 0 1996 IEEE

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96)
0-8186-7379-6/96 $10.00 © 1996 IEEE

and FPA), using data from projects outside the original
model development environments without re-
calibrating the models. The results in’dicate to what
extent these model are generalisable to different
environments. Most models showed a strong over
estimation bias and large estimation errors with the
mean absolute relative error (MARE) ranging from an
average of 57 percent to almost 800 percent.

Ferens and Gumer [3] evaluated three development
effort prediction models (SPANS, Ciheckpoint and
COSTAR) using 22 projects from Albrecht’s database,
and 14 from Kemerer’s dataset. The prediction error is
large, with the MARE ranging from 46 percent for the
Checkpoint model to 105 percent for the COSTAR
model.

Jeffery and Low [7] conducted a study to investigate
the need for model calibration at both the industry as
well as the organisation level. Again the MARE was
high, ranging from 43 to 105 percent for the three
companies which were used in the study. Jeffery, Low
and Barnes [8] compared the SPQR/20 model to FPA
using data from 64 projects within one organisation.
The models were re-calibrated to the local environment
to remove over or under estimation biases. The
estimation errors are considerably less than those of
previous studies with MAREs of approximately 12
percent which reflects the benefits of model calibration.

Heemstra [4] surveyed 364 organisations and found
that only 51 used models to estimate software
development effort and that the model users made no
better estimates than the non-model users. Heemstra
found that most of the time generic models are used
without re-calibration, that most models do not support
re-calibration and that current models are no better
than expert judgement.

Artificial Intelligence techniques do not appear to
have been widely used in development effort estimation
although they have been proposed and used in other
areas of software engineering [12]. Matson and
Mellichamp [lo] developed a knowledge-based system
to assist analysts in estimating a system size in function
points. Mukhopadhyay, Vicinanza and Prieitula [1 l]
developed a model. (Ester) for devel’opme:nt effort
estimation, based on case-based reasoning which was
evaluated against expert judgement, CGCOMO, and
Function Point Analysis (FPA). None of the models
were able to improve on the performance. of the expert.
The estimation error of the expert and of Ester were
considerably less than FPA and CGCOMO. Despite the
improvement the errors are still large with Estor’s
MARE greater than 50 percent. In the Estor CBR
model the system size is based on elapsed time (for
previous cases) and any adaptation of this time is done
on the basis of rules extracted from a protocol analysis
of an expert estimator’s performance on am actual

estimation task;. In the current approach system size is
based on function points and adaptation is on the basis
of differences identified for critical feahures in a case
base of Iprior system developments [l]

Artificial1 neural network models

ANNs have the ability to model comple:x non-linear
relationships amd are capable of approximating any
measurable function. This implies that any lack of
success in applications must arise from inadequate
learning, insufficient numbers of hidden units, or a
lack of a deterministic relationship between input and
target [IS]. ANNs have several features <which make
them <attractive prospects for solving pattern
recognition tasks without having to build an explicit
model of the system.

In a broad sense the network itself is a model
because the topology and transfer functions of the
nodes are usually formulated to match the current
problem. Many network architectures have been
develoF:d for various applications. Back-propagation
networks are used for estimating software development
effort in this research.

Classical back-propagation [13] is a gradient
descent method of optimisation executed iteratively,
with implicit bounds on the distance moved in the
search direction in the weight space. This is achieved
by incorporating a learning rate (the gain) and the
momentlam term (the damping factor) in the model.

The performance of neural networks depends on the
architecmre of the network and their parameter
settings. Detenmining the architecture of a network
(size, structure., connectivity) affects the performance
criteria, such as the learning speed, accuracy of
learning, noise resistance and generalisation ability.
There is no clearly defined theory which allows for the
calculation of the ideal parameter settings and as a rule
even slight parameter changes can cause major
variations in the behaviour of almost all networks.

Network performance evaluation

Performance hleasurement

Different error measurements have been used by
various imetrics researchers, but for this project the
main measure of model performance is the Mean
Absolute Relative Error (MARE). MARE is the
preferred error measure of software measurement
researchers and is calculated as follows [71:

347

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96)
0-8186-7379-6/96 $10.00 © 1996 IEEE

where:
estimate is the network output for each

observation
n is the number of observations

To establish whether models are biased and tend to
over or under estimate, the Mean Relative Error @IRE)
is calculated as follows [7]:

MRE= c
i

n estimate - actual

1
+n

i=l actual

A large positive MRE would suggest that the model
generally over estimates the development effort, while
a large negative value would indicate the reverse.

Simulated Development Data

To assess the development effort estimation ability
of neural networks in large complex environments a
training set is required which is large enough to permit
the network to capture the problem domain
characteristics to facilitate good generalisation. Baum
and Haussler [2] suggested the following formula to
calculate the minimum number of required
observations to achieve satisfactory generalisation:

the fraction of errors on the training set is less than
&
z

\E -Ej
where: m is the number of training cases

N is the number of nodes (just one layer)
W is the number of weights
E is the allowed fraction of errors on test set

(assume a < l/8)

In practice all that is needed is for m > w
E

The error fraction is assumed to be less than 0.125.
This implies that as a guideline approximately ten
observations are required for each weight in the
network.

In this section the neural networks are assessed in a
complex environment which includes many
development attributes. This requires a large software
development dataset in which several attributes have

been recorded. Several datasets are available but
typically these are too small to provide sufficient
observations to fulfil the requirement discussed above.
The availability of a suitable dataset is further
restricted by very few development projects having
reliable records of the numerous development attributes
which have to be included in the model.

To enable such an analysis to be conducted an
alternative approach is taken by generating simulated
software development project data. To do this the
SPQR/20 software estimation tool is used. SPQIV20
has given relatively good results in estimating
development effort in a locally calibrated environment
[8], which suggests that the output it generates
reasonably represents the development environment.

To generate the simulated project data all input
values were created using a random number generator.
Input values were generated for 1,000 projects, and
were then keyed in manually using SPQR/20 to
estimate the project development effort
Some statistical details of the data are given in Table 1.
To note is the large range of system size (109-15,571
FPs) and development hours (2,162-912,309). Such
size range was generated to fully test the neural
networks prediction capability, but it did present itself
with a input and output network scaling problem. Of
interest is the productivity range which was generated
by SPQIV20. Here the project with the highest
productivity is approximately ten times that of the
project with the lowest productivity. This range of
development productivity is typical of commercial
software development productivity [161. This meant
that the neural network had to accommodate large
development attribute influences to generate an effort
estimate from the function point size.

To indicate the network performance a histogram of
the Average Relative Errors (ARE) is shown in Figure
1. As there are 100 observations in the test set, the
frequency on the Y-axis also reflects the frequency
percentage. In the first column is the frequency of
estimates for which the ARES was smaller or equal to 2
percent. The other columns indicate the frequency for
ARES equal or less than 4, 6, 8, and 10 percent
respectively. The final column shows the frequency of
ARES which are greater than 0.10.

Table 1 Details of Simulated Project Dataset

minimum 109 2,162 10.2 0.007
maximum 15,571 912,309 103.2 0.072

mean 2,340 116,238 39.4 0.025
median 2,080 96,772 38.8 0.023

348

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96)
0-8186-7379-6/96 $10.00 © 1996 IEEE

Histogram

0.02 0.06 0.1

ARE

Figure 1 ARE Frequency in Test Set

The results indicate that 83 percent of the estimates
were within eight percent of the actual value. The
network model prediction error had a MRE of -0.003.
This indicates that there was little bias in the estimates,
with over and under estimation errors virtually
cancelling each other out. The MARE was 0.045. To
establish the statistical significance of the estimate a
paired two sample for means t-test was conducted. The
calculated t statistic was well below the #critical t value,
and this indicates that the neural network estimate is
not statistically significantly different from the project
effort.

ASMA Project Data

The Australian Software Metrics Association
(Victoria) has developed a database of software
development project information. In November 1994
Release-5 [1] of this database was made available, and
was used to assess the artificial neural ne:tworks’ ability
to accurately predict development effort

The dataset contains information on 136 projects.
Of these 80 were new developments, 47 system
enhancements, and 9 were miscellaneous projects.
These projects were developed on mainframe, mid-

range and personal coniputers (PC). All except for one
project which was developed in a 2GL (second
generation language) were developed in e:ither 3GLs or
4GLs. Twenty eight different development languages
were used. The four most commonly usled languages
accounted for over 69 percent of the projects. These
were P.L/l, COBOL, Natural, and C with 30, 28, 27,
and 9 percent respectively. Of the 136 projects 119
were DBMSs.

An attempt was made by the Australian Software
Metrics Association (ASMA) to ensure the reliability
and consistency of project data by developing a project
data collectiorn package which was used for all project
data. Currently the International. Software
Benchmarking Standards Group (ISBSG) version 1.0
collection package is being used. This is based on the
ASMA model and has been adopted by the Metrics
Associations of the USA, UK, New Zealand,
Netherlands and Germany, and has now &come the de
facto international standard.

The development of the collection package is an
attempt to ensure a consistent fOMli%t t0 allow
meaningful comparisons. Definitions are also provided
for several measurements to reduce subjectivity and
inconsistency in measurement. For the function point
count the International Function Point Users Group
(IFPUG) standard is adopted.
The range of system size, development effort and
productivity are shown in Table 2. Across all three
attributes the range is large. This complicates the
development effort estimation process. For the original
dataset from which extreme outliers had been
eliminated, the project with the highest productivity is
approximately 34 times that of the lowest productivity.
This range is not unusual when compared to other
project development productivity datasets [161.

In Table 2 the mean and median values for the
three attributes are also shown. In all cases the mean
exceeds the median value which indicates that the
sample numbers are skewed towards the: smaller or
lower productivity projects.

Despite all the precautions taken to ensure reliable
measurement of project data it is probable that some
noise is present in the data due to the large scope of
development environments and individual company

Table 2 : ASMA Project Data Statistics

M&X 5,789 59,990 1.111
Mean 7’74 5704 0.252
Median 349 2388 0.175

349

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96)
0-8186-7379-6/96 $10.00 © 1996 IEEE

Table 3 Error Using Only Function Point Size as Input
. .._ .;:.. ~~~~~~-~~~~~~~~~~~~l,:~~~::~I: iT~Se~~~~~~~~~~~~~~~,~:~~~~~~~ .:.:-:.z+:.::::::::;:::.:.:.:; ..:. ~:.~ ,_.,., :,:,: :,:, : : :

0.12 -0.14 -0.20 -0.08
0.44 0.22 0.21 0.29

practices and standards. Other sources of possible noise average over or under estimated development effort.
in the project data were mentioned previously. Despite The MARE for the three test sets combined was 0.29.
some possible difficulties with the project data it For all three tests sets combined, the percentage error
reflects typical data from which effort estimates have to smaller than 10 percent, 25 percent and 50 percent is
be made in practice. shown in Table 4.

terms of function points and development hours were
eliminated from the projects eligible for inclusion in
the testing set to avoid the neural network having to
estimate outside the range of the data on which its was

O-10% 33.3 33.3
1 l-25% 23.3 56.7
2650% 40.0 96.7

>50% 3.3 100.0
trained.

To replicate the results three sets of training and
testing data were selected, again using a random
number generator to do this.

Initially in this set of trials the networks predicted
development effort with only the single input of the
function point size of projects. Many factors apart from
the size of a system affect software development effort
Using only project size as input limits the information
which the networks have to enable them to adjust their
weight space, and effort estimation is not as accurate as
when further relevant attributes are added.
The results of the back-propagation networks for all
three testing sets is given in Table 3. The MRE is also
included to indicate to what extent the models on

The ASMA project data [l] in addition to the
function point size of systems had recorded some other
development project attributes. The attributes are those
shown in Table 5.

Trials were conducted to test the model by
combining function point size with the above six
development attributes into an integrated model.
Combining the attributes into a single model permits
the neural networks to model the interrelationships
which exist between the development attributes. It
should be noted that some of the development attribute
data was missing, further complicating the estimating
procedure.

Table 5 ASMA Project Attributes
.A: ::...::......^..j :~~P;i~~~~~~~~~~~~~~~~~~:~~~~~~~~~~~~.~~~~~~~~~~~~~~~~~~i

‘::: :.:. :‘.:.:.::*.~ i...ii_....i ,... ,>:.)):.:.:.:...:_......... ..~..~ ..iii,.,.,,.,i.... :.:.:.i:-::.:::~.-.-:::....: :.. :..i;.!::: ..::.... :.: .:.:.:. ::: .:: :...:.:.:‘:.:.:.:.‘_:.. .A\...... “.‘......,....i.. ...i......i.l... :....A ._.,...,.. .,., ., ,.-.-...-
Language Type 3GL and 4GL
Time Recording Level Levels l-4
Hardware Platform Mainframe, Mid-range, PC
Application Generator Yes/No
DBMS Yes/No
Development Type New, Enhancement, Miscellaneous

Table 6 Models Using Seven Inputs to Estimate Effort

350

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96)
0-8186-7379-6/96 $10.00 © 1996 IEEE

Again the same three test sets as above were used.
As in all previous cases the development of the neural
network model required a systematic development
approach to establish the topology and parameter
settings resulting in the lowest prediction error. The
model estimation error summary is given in Table 6.
As can be seen the estimation error has been
considerably reduced by the expanded model. The
ANNs have used this additional information provided
to model stronger relationships between the inputs and
development effort than only system size wa!s able to
do, thus resulting in a reduced error.
Again for all three tests sets combined, the percentage
error smaller than 10 percent, 25 percent and 50
percent is shown in Table 7. Only one project had a
prediction error greater than 50 percent and this was
only 51 percent.

Table 7 Analysis of Prediction Alccuracy

hardware platform (Mainframe, Midrange or EC). For
differences in language type the adaptati’on was done
on the basis of the average productivity difference
between 3GL and 4GL developments in tlhe case base.
For differences in hardware platform, adaptation was
similarly based on productivity differences,.

Computing function points as an estimate of system
size requires the use of 14 technical complexity factors
which are used to adapt the size estimate. It is
probable that a more precise form of CBR adaptation
could be built based on the use of unadjusted function
points and these fourteen factors. However these factors
are not at this stage readily available and the purpose
of this phase of the research is to establish whether the
CBR approach appears to have potenti,al value for
software effort estimation.

A total of 64 new development cases were used
from the ASMA database in this analysis. Although
data relating to system enhancements could have been
included it was considered that using new

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ developments only was adequate to test the feasibility 
~~:~~~~~~~~~~~~~~~~~~~~~~~~ of appkying (-1-R m the estimation pr&lem. An :.:.:.~~:.~:.:c.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.~~.... . . . . . . . . . . . . . . . :.:.:.:.:.:.: :.:.:.:::: :::::::::::::::: ::::::; :,:, ~~:.~ ,_\\ : -’ 

O-10% 40.0 40.0 analysis of the: project information indicated that for 
1 l-25% 36.7 76.7 some projects rhe function point count maly have been 
26-50% 20.0 96.7 unreliable,. Also excluded were outlier projects with 
>50% 3.3 100.0 extreme values in productivity and all pnojects which 

were smaller than an arbitrary 30 function points, as it 

A Case-Based Reasoning Model 

The case-based reasoning paradigm h,as an intuitive 
appeal for use in software effort estimation as it has the 
capability to model the way expert estimation is 
performed as well as explaining the rea:soning applied 
to adapt past cases. This section of the rese,arch was 
performed primarily to evaluate the potential of this 
approach in using cases from existing datalbases on 
software development effort eg. the ASMA (database. 
Given the expected growth of the ASMA database a 
relatively large set of cases will become available for 
adaptation by a suitable CBR tool. 

The ASMA Release-5 [l] data was used for this 
analysis and the CBR model was built using ESTEEM. 
Cases were matched on similarity for size (in function 
points) and time recording method. (The ASMA data 
collection allows respondents to use one of four 
methods for what aspects of staff time alre to be 
included in the project effort estimation). A number of 
rules were developed for case adaptation. Estleem will 
retrieve a set of the most similar soume cases given 
target case features. Adaptation was done on the basis 
of the relative size of the source and target cases (in 
function points), any difference in development 
language (3GL vs. 4GL) and any difference in 

was considered that these were too small to cover the 
typical development scope. This eliminated 16 projects 
and meant that the number of projects was reduced to 
64. 

To allow a reasonable sample to test the CBR 
approach three different evaluations were performed. 
Five cases were selected at random from the available 
cases and the remainder formed the case base. For 
each target case the five most similar cases were 
retrieved from the case base and adapted by the 
adaptation rules. The target case size estimate was 
then based on the average of these five estimates. The 
results are given in Table 8 below. For this group the 
MARE ‘was O-482 and the MRE was 0.256. These 
results were however distorted by a single (case with an 
ARE of 3..19. For this case an actual value of 1045 
development hours was estimated as 4381 development 
hours. IRemoval of this outlier reduced the MARE to 
0.289 and the MRE to 0.05. Such occasional outlier 
results are not unexpected as not all factors which 
affect project effort were available to be inc.luded in the 
model. The omission of just a single relevant attribute 
can have a significant effect on estimation accuracy. 

It is useful to assess whether the use of adaptation 
rules improves the estimate which could be obtained 
using the size factor alone. For this a size estimate was 

351 

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96) 
0-8186-7379-6/96 $10.00 © 1996 IEEE 



Table 8 Analysis of Prediction Accuracy networks demonstrated that they were able to estimate 
;.~(.:.x,:.,. ..,. ,. ., ./. . . . . . . . . . . ..(. ~~~ :.;.:. ~~~..~.:.:,~:.~..:.:.:.;:~::~~...:.:.~~~~:::::::~:~.:.:.~~~:.:::;..: .,.,.... ~)) _,/...,.,. :....:::.~..i development effort within 25 percent of the actual 
~~~~~~~~~~~~~~~~~~~~~~~~~~~,~~~~~~~~~ :..::.,; ,,,,, ‘. .“‘. ‘.‘.‘-.:-: =‘x’-‘-‘.:.%.> . . . . I ..,...i. ..,.. -.-... . . . . ..,...., ‘-:‘:‘: :c : : : : :.:.::::n’;‘:.:.: ::::y:.: 1,. ‘. ...............“.i.. ,___ ,.,,(,.. ““...““‘..‘...“..““...“‘..‘.‘.‘... . . . . ..__.\.............._ ,.;..,.:, ,...,.,.,. . . . . ..____._ “..“‘.// ‘. .’ ” ” “. ““‘.’ ‘.“‘:‘.‘.‘“...-..- i’.‘.‘. L..“. .:.:.::::: ..,.,., ;,:.: __ _, ..,,_,, _. .,_ i:‘.:.:......r...:....:. . . ..__. . . 

.~.. i . .~~.~~~~~~~~.~~~~~~~~~~~~ effort in more than 75 percent of the projects in the test
.““.....~.~.~.~.~.~.........,,., ::::- ,,:,,, .., ,-,,(,‘, : : : i..,.::.. ._ : :,:_,,;.-,,:,:,:,

------- sets, and with a MARE of less than 0.25. Even this
o-10% 20.0 20.0
ll-25% 33.3 53.3

dataset did not fully meet the data requirements of

2650% 20.0 73.3
neural networks as suggested by Baum and Haussler

30% 27.7 100.0
[2], and Hinton [5].

Results for the use of CBR were not quite as good

generated for each case in the above sample based on
an average of the five nearest neighbour estimates.
Each nearest neighbour estimate is based on an
assumption that for projects of similar size the
productivity rate will be similar eg. if for a source case
of 1000 function point’s there is a recorded
development time of 5000 hours then for a target case
of 1500 function point’s it is assumed that the best
estimate of development time will be 7500 hours.
Averaging over a number of such estimates should
reduce the impact of variations in productivity.

Comparing this sample to that using adaptation
rules showed that the use of rules improved the
estimate in 12 of the 15 cases but reduced the accuracy
in the other three. Overall the MARE for 15
unadapted cases was 0.846 (as opposed to 0.48) or 0.63
compared to 0.289 with the outlier case removed.
Applying a simple t-test indicated that the
improvement was significant at the 5% level (t=2.29,
p=O. 18).

The adaptation rules applied only to hardware
platform used and language type. Given the relative
crudity of the adaptation rules used in the CBR model
at this stage, the results appear to indicate that this
technique may with further refinement have
considerable potential in software effort estimation.
For this sample the data came from a variety of sources
and contained a considerable amount of noise. The
results would suggest that the use of more precise
forms of adaptation and a wider range of the factors
which influence productivity could lead to better
estimates, particularly if the cases could be restricted to
specific organisations (the equivalent of calibrating
regression models for a specific environment).

Conclusion

ANNs were successful in accurately estimating
project effort in a large dataset of simulated project
data which is likely to have contained considerably less
noise than typically occurs in project data. This dataset
met the requirements of sufficient observations for
adequate training. The intuitive expectation is that
estimation errors will increase as the level of noise in
the dataset is increased.

In the ASMA dataset the back-propagation

with 11 of 15 cases (73.3%) within 50% of the actual
effort value and 8 of 15 (53.3%) within 25% of the
actual. The results are however encouraging as only a
few factors were considered for adaptation and the
rules used were very limited in scope.

Despite the restrictions of the project dataset,
artificial neural networks have shown their ability to
provide an adequate effort estimation model. Although
CBR appears to have potential, further research will be
needed to refine the quality of the estimation model.
With the limited number of observations and project
attributes which were recorded the full potential of the
estimation capability of models could not be fully
exploited and assessed. If the growth in projects in the
ASMA dataset continues to increase at the current rate
the database should within a few years provide a basis
for the development of improved estimation models. If
in addition relevant project attributes are recorded this
should further enhance the models which may be
developed.

The conclusion thus is a conditional affirmation
that artificial intelligence models are capable of
providing adequate estimation models. Their
performance is to a large degree dependent on the data
on which they are trained, and the extent to which
suitable project data is available will determine the
extent to which adequate effort estimation models can
be developed.

References

Ul

[21

131

141

PI

ASMA (Victoria), Project Database-Release 5,
Australian Software Metrics Association, P.O. Box
1278. Box Hill, Victoria 3128, November 1994.

E.B. Baum, and D. Haussler, What Size Net Gives
Valid Generalization?, Neural Computation 1, pp. 151-
160,1989.

D.V. Ferens, and R.B. Gumer, An Evaluation of Three
Function Point Models for Estimation of Software
Effort, IEEE National Aerospace and Electronics
Conference - NAECON92, vol. 2, pp. 625-642, 1992.

F.J. Heemstra, Software Cost Estimation. Information
and Software Technology, vol. 34, no. 10, pp. 627-639.
1992.

G.E. Hinton, Neural Networks Seminar, University of
Sydney, February 1993.

352

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96)
0-8186-7379-6/96 $10.00 © 1996 IEEE

[61

171

I81

PI

K. Hornik. M. Stinchcombe, and H. White. Multilayer [12] C.L.. Ramsey and V.R. Basili. An Evaluation of Expert
Feedforward Networks are Universal Approximators, Systems for Software Engineering Management, IEEE
Neural Nehvorks, vol. 2. pp. 359-366. 1’989. Transactions on S.E.. vol. 15, no. 6, June 11989.

D.R Jeffery. and G.C. Low, Calibrating Estimation
Tools for Software Development, SofMllrrre Engineering
Journal, pp. 215-221, July 1990.

D.R. Jeffery, G.C. Low and M. Barnes, ‘A Comparison
of Function Point Counting Techniques’, IEEE
Transactions on Sofrwore Engineering, vol. 119, no. 5,
pp. 529-532.1993.

[13] D.E.. Rumelhart, G.E. Hinton, and R.J. Williams,
Learning Internal Representations by Ermr Propagation,
Parallel Distributed Processing: Explorations in the
Microstructures of Cognition, Cambridge, MA., MIT
Press, vol. 1. pp. 318-362, 1986.

C.F. Kemerer. An Empirical Validation of Software
Cost Estimation Models, Co mm&cations of the ACM,
vol. 30, no 5, pp. 416-429, May 1987.

[14] D. Treigueiros, and R. Berry, The Application of Neural
Network based Methods to the Extraction of Knowledge
fmm Accounting Reports, Proceedings of 24th Annual
Hawaii International Conference on System Sciences,
vol. IV, pp. 137-146, 1991.

[lo] J.E.Matson and J.M.Mellichamp, An Object-oriented
Tool for Function Point Analysis, Expe,rt Systems, vol.
10, no. 1. Feb 1993.3-14.

[I I] T. Mukhopadhyay, S.S. Vicinanza, and M.J. Prietula,
Examining the Feasibility of a Case-Based Fleasoning
Model for Software Effort Estimation, MIS &arterly,
vol. 16, no. 2, pp. 155-171.1992.

[15] I.Watson and F Marir, Case-based Reasoning: A
Review, The Knowledge Engineering Review, vol 9. no.
4,1994,327-354.

[16] G.E. Wittig, and G.R. Firmie, Software Development
Productivity Variations in Function Point Research
Data. Working Paper 1994-3-108/B. Bond University,
April. 1994.

353

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96)
0-8186-7379-6/96 $10.00 © 1996 IEEE

	Bond University
	ePublications@bond
	June 1996

	AI Tools for Software Development Effort Estimation
	Gavin Finnie
	Gerhard E. Wittig
	Recommended Citation

	tmp.1153836137.pdf.86Xlg

