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AI Tools for Software Development Effort Estimation 

Gavin FL Finnie and Gerhard E. Wittig 
Bond University 

Gold Coast, Queensland, Australia 

Abstract 

Software development involves a number of 
interrelated factors which affect development effort 
and productivity. Since many of these relationships 
are not well understood, accurate estimation of 
so&are development time and effort is a dificult 
problem. Most estimation models in use or proposed in 
the literature are based on regression techniques. This 
paper examines the potential of two artijcial 
intelligence approaches i.e. artificial neural network 
and case-based reasoning for creating development 
effort estimation models. 

Artijcial neural network can provide accurate 
estimates when there are complex relationships 
between variables and where the input data is distorted 
by high noise levels Case-based reasoning solves 
problems by adapting solutions from old problems 
similar to the current problem. This research examines 
both the performance of back-propagation artificial 
neural networks in estimating software development 
effort and the potential of case-based reasoning for 
development estimation using the same dataset. 

Key Words: Function points, Software development, 
Artificial neural networks, Case based reasoning 

Introduction 

Estimating software development effort remains a 
complex problem attracting considerable research 
attention. Improving the estimation techniques 
available to project managers would facilitate more 
effective control of time and budgets in software 
development. Software development involves a 
number of interrelated factors which affect 
development effort and productivity. Accurate 
forecasting has proved difficult since many of these 
relationships are not well understood. Heemsrra [4] 
concluded that estimation models have not shown that 
they can be used as a reliable estimation tool. 

Most estimation models in use or proposed in the 

literature are based on regression techniques. This 
paper examines the potential of two artificial 
intelligence approaches ie. artificial neural networks 
and case-based reasoning, in providing the basis for 
development effort estimation models. Artificial neural 
networks (ANNs) are recognised for their ability to 
provide good results when dealing with problems 
where there are complex relationships between inputs 
and outputs, and where the input data is distorted by 
high noise levels [14]. The software development 
environment from which development effort estimates 
are generated, is characterised by these attributes. 
Although the potential for predictive accuracy is good, 
neural networks lack an explanation capability and do 
not provide an environment for direct user adaptation 
of results. 

Case-based reasoning (CBR) [15] is a problem 
solving technique which solves new problems by 
adapting solutions that were used to solve old 
problems. CBR retrieves one or more cases similar to 
the current problem and attempts to modify these to fit 
the current problem parameters. In software 
development effort estimation, each case could be a 
previous software development while the current 
problem is one of extracting a suitable estimate for the 
current project. Case-based reasoners can justify 
decisions on the basis of the previous cases used in 
solving a problem. 

This research examines the performance of back- 
propagation artificial neural networks in estimating 
software development effort by evaluating the 
performance of ANN effort estimation models on 
actual project data. In addition the potential of CBR 
for development effort estimation is investigated using 
the same project data. 

Estimation model performance 

Several researchers have evaluated a range of 
software effort estimation models. The problem has 
been shown to be a complex issue and results have in 
general not been encouraging. 

Kemerer [9] performed an empirical validation of 
four algorithmic models (SLIM, COCOMO, Estimacs 
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and FPA), using data from projects outside the original 
model development environments without re- 
calibrating the models. The results in’dicate to what 
extent these model are generalisable to different 
environments. Most models showed a strong over 
estimation bias and large estimation errors with the 
mean absolute relative error (MARE) ranging from an 
average of 57 percent to almost 800 percent. 

Ferens and Gumer [3] evaluated three development 
effort prediction models (SPANS, Ciheckpoint and 
COSTAR) using 22 projects from Albrecht’s database, 
and 14 from Kemerer’s dataset. The prediction error is 
large, with the MARE ranging from 46 percent for the 
Checkpoint model to 105 percent for the COSTAR 
model. 

Jeffery and Low [7] conducted a study to investigate 
the need for model calibration at both the industry as 
well as the organisation level. Again the MARE was 
high, ranging from 43 to 105 percent for the three 
companies which were used in the study. Jeffery, Low 
and Barnes [8] compared the SPQR/20 model to FPA 
using data from 64 projects within one organisation. 
The models were re-calibrated to the local environment 
to remove over or under estimation biases. The 
estimation errors are considerably less than those of 
previous studies with MAREs of approximately 12 
percent which reflects the benefits of model calibration. 

Heemstra [4] surveyed 364 organisations and found 
that only 51 used models to estimate software 
development effort and that the model users made no 
better estimates than the non-model users. Heemstra 
found that most of the time generic models are used 
without re-calibration, that most models do not support 
re-calibration and that current models are no better 
than expert judgement. 

Artificial Intelligence techniques do not appear to 
have been widely used in development effort estimation 
although they have been proposed and used in other 
areas of software engineering [12]. Matson and 
Mellichamp [lo] developed a knowledge-based system 
to assist analysts in estimating a system size in function 
points. Mukhopadhyay, Vicinanza and Prieitula [ 1 l] 
developed a model. (Ester) for devel’opme:nt effort 
estimation, based on case-based reasoning which was 
evaluated against expert judgement, CGCOMO, and 
Function Point Analysis (FPA). None of the models 
were able to improve on the performance. of the expert. 
The estimation error of the expert and of Ester were 
considerably less than FPA and CGCOMO. Despite the 
improvement the errors are still large with Estor’s 
MARE greater than 50 percent. In the Estor CBR 
model the system size is based on elapsed time (for 
previous cases) and any adaptation of this time is done 
on the basis of rules extracted from a protocol analysis 
of an expert estimator’s performance on am actual 

estimation task;. In the current approach system size is 
based on function points and adaptation is on the basis 
of differences identified for critical feahures in a case 
base of Iprior system developments [l] 

Artificial1 neural network models 

ANNs have the ability to model comple:x non-linear 
relationships amd are capable of approximating any 
measurable function. This implies that any lack of 
success in applications must arise from inadequate 
learning, insufficient numbers of hidden units, or a 
lack of a deterministic relationship between input and 
target [IS]. ANNs have several features <which make 
them <attractive prospects for solving pattern 
recognition tasks without having to build an explicit 
model of the system. 

In a broad sense the network itself is a model 
because the topology and transfer functions of the 
nodes are usually formulated to match the current 
problem. Many network architectures have been 
develoF:d for various applications. Back-propagation 
networks are used for estimating software development 
effort in this research. 

Classical back-propagation [13] is a gradient 
descent method of optimisation executed iteratively, 
with implicit bounds on the distance moved in the 
search direction in the weight space. This is achieved 
by incorporating a learning rate (the gain) and the 
momentlam term (the damping factor) in the model. 

The performance of neural networks depends on the 
architecmre of the network and their parameter 
settings. Detenmining the architecture of a network 
(size, structure., connectivity) affects the performance 
criteria, such as the learning speed, accuracy of 
learning, noise resistance and generalisation ability. 
There is no clearly defined theory which allows for the 
calculation of the ideal parameter settings and as a rule 
even slight parameter changes can cause major 
variations in the behaviour of almost all networks. 

Network performance evaluation 

Performance hleasurement 

Different error measurements have been used by 
various imetrics researchers, but for this project the 
main measure of model performance is the Mean 
Absolute Relative Error (MARE). MARE is the 
preferred error measure of software measurement 
researchers and is calculated as follows [71: 
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where: 
estimate is the network output for each 

observation 
n is the number of observations 

To establish whether models are biased and tend to 
over or under estimate, the Mean Relative Error @IRE) 
is calculated as follows [7]: 

MRE= c 
i 

n estimate - actual 

1 
+n 

i=l actual 

A large positive MRE would suggest that the model 
generally over estimates the development effort, while 
a large negative value would indicate the reverse. 

Simulated Development Data 

To assess the development effort estimation ability 
of neural networks in large complex environments a 
training set is required which is large enough to permit 
the network to capture the problem domain 
characteristics to facilitate good generalisation. Baum 
and Haussler [2] suggested the following formula to 
calculate the minimum number of required 
observations to achieve satisfactory generalisation: 

the fraction of errors on the training set is less than 
& 
z 

\E -Ej 
where: m  is the number of training cases 

N is the number of nodes (just one layer) 
W  is the number of weights 
E is the allowed fraction of errors on test set 

(assume a < l/8 ) 

In practice all that is needed is for m  > w 
E 

The error fraction is assumed to be less than 0.125. 
This implies that as a guideline approximately ten 
observations are required for each weight in the 
network. 

In this section the neural networks are assessed in a 
complex environment which includes many 
development attributes. This requires a large software 
development dataset in which several attributes have 

been recorded. Several datasets are available but 
typically these are too small to provide sufficient 
observations to fulfil the requirement discussed above. 
The availability of a suitable dataset is further 
restricted by very few development projects having 
reliable records of the numerous development attributes 
which have to be included in the model. 

To enable such an analysis to be conducted an 
alternative approach is taken by generating simulated 
software development project data. To do this the 
SPQR/20 software estimation tool is used. SPQIV20 
has given relatively good results in estimating 
development effort in a locally calibrated environment 
[8], which suggests that the output it generates 
reasonably represents the development environment. 

To generate the simulated project data all input 
values were created using a random number generator. 
Input values were generated for 1,000 projects, and 
were then keyed in manually using SPQR/20 to 
estimate the project development effort 
Some statistical details of the data are given in Table 1. 
To note is the large range of system size (109-15,571 
FPs) and development hours (2,162-912,309). Such 
size range was generated to fully test the neural 
networks prediction capability, but it did present itself 
with a input and output network scaling problem. Of 
interest is the productivity range which was generated 
by SPQIV20. Here the project with the highest 
productivity is approximately ten times that of the 
project with the lowest productivity. This range of 
development productivity is typical of commercial 
software development productivity [ 161. This meant 
that the neural network had to accommodate large 
development attribute influences to generate an effort 
estimate from the function point size. 

To indicate the network performance a histogram of 
the Average Relative Errors (ARE) is shown in Figure 
1. As there are 100 observations in the test set, the 
frequency on the Y-axis also reflects the frequency 
percentage. In the first column is the frequency of 
estimates for which the ARES was smaller or equal to 2 
percent. The other columns indicate the frequency for 
ARES equal or less than 4, 6, 8, and 10 percent 
respectively. The final column shows the frequency of 
ARES which are greater than 0.10. 

Table 1 Details of Simulated Project Dataset 

minimum 109 2,162 10.2 0.007 
maximum 15,571 912,309 103.2 0.072 

mean 2,340 116,238 39.4 0.025 
median 2,080 96,772 38.8 0.023 
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Histogram 

0.02 0.06 0.1 

ARE 

Figure 1 ARE Frequency in Test Set 

The results indicate that 83 percent of the estimates 
were within eight percent of the actual value. The 
network model prediction error had a MRE of -0.003. 
This indicates that there was little bias in the estimates, 
with over and under estimation errors virtually 
cancelling each other out. The MARE was 0.045. To 
establish the statistical significance of the estimate a 
paired two sample for means t-test was conducted. The 
calculated t statistic was well below the #critical t value, 
and this indicates that the neural network estimate is 
not statistically significantly different from the project 
effort. 

ASMA Project Data 

The Australian Software Metrics Association 
(Victoria) has developed a database of software 
development project information. In November 1994 
Release-5 [1] of this database was made available, and 
was used to assess the artificial neural ne:tworks’ ability 
to accurately predict development effort 

The dataset contains information on 136 projects. 
Of these 80 were new developments, 47 system 
enhancements, and 9 were miscellaneous projects. 
These projects were developed on mainframe, mid- 

range and personal coniputers (PC). All except for one 
project which was developed in a 2GL (second 
generation language) were developed in e:ither 3GLs or 
4GLs. Twenty eight different development languages 
were used. The four most commonly usled languages 
accounted for over 69 percent of the projects. These 
were P.L/l, COBOL, Natural, and C with 30, 28, 27, 
and 9 percent respectively. Of the 136 projects 119 
were DBMSs. 

An attempt was made by the Australian Software 
Metrics Association (ASMA) to ensure the reliability 
and consistency of project data by developing a project 
data collectiorn package which was used for all project 
data. Currently the International. Software 
Benchmarking Standards Group (ISBSG) version 1.0 
collection package is being used. This is based on the 
ASMA model and has been adopted by the Metrics 
Associations of the USA, UK, New Zealand, 
Netherlands and Germany, and has now &come the de 
facto international standard. 

The development of the collection package is an 
attempt to ensure a consistent fOMli%t t0 allow 
meaningful comparisons. Definitions are also provided 
for several measurements to reduce subjectivity and 
inconsistency in measurement. For the function point 
count the International Function Point Users Group 
(IFPUG) standard is adopted. 
The range of system size, development effort and 
productivity are shown in Table 2. Across all three 
attributes the range is large. This complicates the 
development effort estimation process. For the original 
dataset from which extreme outliers had been 
eliminated, the project with the highest productivity is 
approximately 34 times that of the lowest productivity. 
This range is not unusual when compared to other 
project development productivity datasets [ 161. 

In Table 2 the mean and median values for the 
three attributes are also shown. In all cases the mean 
exceeds the median value which indicates that the 
sample numbers are skewed towards the: smaller or 
lower productivity projects. 

Despite all the precautions taken to ensure reliable 
measurement of project data it is probable that some 
noise is present in the data due to the large scope of 
development environments and individual company 

Table 2 : ASMA Project Data Statistics 

M&X 5,789 59,990 1.111 
Mean 7’74 5704 0.252 
Median 349 2388 0.175 
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Table 3 Error Using Only Function Point Size as Input 
. .._ .;:.. ~~~~~~-~~~~~~~~~~~~l,:~~~::~I: iT~Se~~~~~~~~~~~~~~~,~:~~~~~~~ .:.:-:.z+:.::::::::;:::.:.:.:; ..:. ~:.~ ,_.,., :,:,: :,:, : : : 

0.12 -0.14 -0.20 -0.08 
0.44 0.22 0.21 0.29 

practices and standards. Other sources of possible noise average over or under estimated development effort. 
in the project data were mentioned previously. Despite The MARE for the three test sets combined was 0.29. 
some possible difficulties with the project data it For all three tests sets combined, the percentage error 
reflects typical data from which effort estimates have to smaller than 10 percent, 25 percent and 50 percent is 
be made in practice. shown in Table 4. 

terms of function points and development hours were 
eliminated from the projects eligible for inclusion in 
the testing set to avoid the neural network having to 
estimate outside the range of the data on which its was 

O-10% 33.3 33.3 
1 l-25% 23.3 56.7 
2650% 40.0 96.7 

>50% 3.3 100.0 
trained. 

To replicate the results three sets of training and 
testing data were selected, again using a random 
number generator to do this. 

Initially in this set of trials the networks predicted 
development effort with only the single input of the 
function point size of projects. Many factors apart from 
the size of a system affect software development effort 
Using only project size as input limits the information 
which the networks have to enable them to adjust their 
weight space, and effort estimation is not as accurate as 
when further relevant attributes are added. 
The results of the back-propagation networks for all 
three testing sets is given in Table 3. The MRE is also 
included to indicate to what extent the models on 

The ASMA project data [l] in addition to the 
function point size of systems had recorded some other 
development project attributes. The attributes are those 
shown in Table 5. 

Trials were conducted to test the model by 
combining function point size with the above six 
development attributes into an integrated model. 
Combining the attributes into a single model permits 
the neural networks to model the interrelationships 
which exist between the development attributes. It 
should be noted that some of the development attribute 
data was missing, further complicating the estimating 
procedure. 

Table 5 ASMA Project Attributes 
. . . . . . . . . . . .A: ::...::...... . . ..^.. . . . . . . . . . . ........................j :~~P;i~~~~~~~~~~~~~~~~~~:~~~~~~~~~~~~.~~~~~~~~~~~~~~~~~~i 

‘::: :.:. . . . . . :‘.:.:.::*.~ i...ii_....i . . . . . . . . . . . . . . . . . . . ,... ,>:.)):.:.:.:...: . . . . . . . . . . . . . . .._......... ..~..~ ..iii,.,.,,.,i.... :.:.:.i:-::.:::~.-.- . . . . . . . .:::....: . . . . . . . . . . :.. :..i;.!::: ..::.... . . . . . :.: .:.:.:. ::: .:: :...:.:.:‘:.:.:.:.‘_:.. .A\...... “.‘......,....i.. ...i......i.l... . . . . . . . . :.... . . . . . . . . . . . . . ..A ._. . . . . .,...,.. .,., ., ,. . . . . . . . . . . . . . . ..-.-...- . . . . . . . . . . . . . . . . . 
Language Type 3GL and 4GL 
Time Recording Level Levels l-4 
Hardware Platform Mainframe, Mid-range, PC 
Application Generator Yes/No 
DBMS Yes/No 
Development Type New, Enhancement, Miscellaneous 

Table 6 Models Using Seven Inputs to Estimate Effort 

350 

Proceedings of the 1996 International Conference on Software Engineering: Education and Practice (SE: E&P '96) 
0-8186-7379-6/96 $10.00 © 1996 IEEE 



Again the same three test sets as above were used. 
As in all previous cases the development of the neural 
network model required a systematic development 
approach to establish the topology and parameter 
settings resulting in the lowest prediction error. The 
model estimation error summary is given in Table 6. 
As can be seen the estimation error has been 
considerably reduced by the expanded model. The 
ANNs have used this additional information provided 
to model stronger relationships between the inputs and 
development effort than only system size wa!s able to 
do, thus resulting in a reduced error. 
Again for all three tests sets combined, the percentage 
error smaller than 10 percent, 25 percent and 50 
percent is shown in Table 7. Only one project had a 
prediction error greater than 50 percent and this was 
only 51 percent. 

Table 7 Analysis of Prediction Alccuracy 

hardware platform (Mainframe, Midrange or EC). For 
differences in language type the adaptati’on was done 
on the basis of the average productivity difference 
between 3GL and 4GL developments in tlhe case base. 
For differences in hardware platform, adaptation was 
similarly based on productivity differences,. 

Computing function points as an estimate of system 
size requires the use of 14 technical complexity factors 
which are used to adapt the size estimate. It is 
probable that a more precise form of CBR adaptation 
could be built based on the use of unadjusted function 
points and these fourteen factors. However these factors 
are not at this stage readily available and the purpose 
of this phase of the research is to establish whether the 
CBR approach appears to have potenti,al value for 
software effort estimation. 

A total of 64 new development cases were used 
from the ASMA database in this analysis. Although 
data relating to system enhancements could have been 
included it was considered that using new 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ developments only was adequate to test the feasibility 
~~:~~~~~~~~~~~~~~~~~~~~~~~~ of appkying (-1-R m the estimation pr&lem. An :.:.:.~~:.~:.:c.:.:.:.:.:.:.:.:.:.:.:.:.:.:.:.~~.... . . . . . . . . . . . . . . . :.:.:.:.:.:.: :.:.:.:::: :::::::::::::::: ::::::; :,:, ~~:.~ ,_\\ : -’ 

O-10% 40.0 40.0 analysis of the: project information indicated that for 
1 l-25% 36.7 76.7 some projects rhe function point count maly have been 
26-50% 20.0 96.7 unreliable,. Also excluded were outlier projects with 
>50% 3.3 100.0 extreme values in productivity and all pnojects which 

were smaller than an arbitrary 30 function points, as it 

A Case-Based Reasoning Model 

The case-based reasoning paradigm h,as an intuitive 
appeal for use in software effort estimation as it has the 
capability to model the way expert estimation is 
performed as well as explaining the rea:soning applied 
to adapt past cases. This section of the rese,arch was 
performed primarily to evaluate the potential of this 
approach in using cases from existing datalbases on 
software development effort eg. the ASMA (database. 
Given the expected growth of the ASMA database a 
relatively large set of cases will become available for 
adaptation by a suitable CBR tool. 

The ASMA Release-5 [l] data was used for this 
analysis and the CBR model was built using ESTEEM. 
Cases were matched on similarity for size (in function 
points) and time recording method. (The ASMA data 
collection allows respondents to use one of four 
methods for what aspects of staff time alre to be 
included in the project effort estimation). A number of 
rules were developed for case adaptation. Estleem will 
retrieve a set of the most similar soume cases given 
target case features. Adaptation was done on the basis 
of the relative size of the source and target cases (in 
function points), any difference in development 
language (3GL vs. 4GL) and any difference in 

was considered that these were too small to cover the 
typical development scope. This eliminated 16 projects 
and meant that the number of projects was reduced to 
64. 

To allow a reasonable sample to test the CBR 
approach three different evaluations were performed. 
Five cases were selected at random from the available 
cases and the remainder formed the case base. For 
each target case the five most similar cases were 
retrieved from the case base and adapted by the 
adaptation rules. The target case size estimate was 
then based on the average of these five estimates. The 
results are given in Table 8 below. For this group the 
MARE ‘was O-482 and the MRE was 0.256. These 
results were however distorted by a single (case with an 
ARE of 3..19. For this case an actual value of 1045 
development hours was estimated as 4381 development 
hours. IRemoval of this outlier reduced the MARE to 
0.289 and the MRE to 0.05. Such occasional outlier 
results are not unexpected as not all factors which 
affect project effort were available to be inc.luded in the 
model. The omission of just a single relevant attribute 
can have a significant effect on estimation accuracy. 

It is useful to assess whether the use of adaptation 
rules improves the estimate which could be obtained 
using the size factor alone. For this a size estimate was 
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Table 8 Analysis of Prediction Accuracy networks demonstrated that they were able to estimate 
;.~(.:.x,:.,. ..,. ,. ., ./. . . . . . . . . . . ..(. ~~~ :.;.:. ~~~..~.:.:,~:.~..:.:.:.;:~::~~...:.:.~~~~:::::::~:~.:.:.~~~:.:::;..: .,.,.... ~)) _,/...,.,. :....:::.~..i development effort within 25 percent of the actual 
~~~~~~~~~~~~~~~~~~~~~~~~~~~,~~~~~~~~~ :..::.,; ,,,,, ‘. .“‘. ‘.‘.‘-.:-: =‘x’-‘-‘.:.%.> . . . . I ..,...i. ..,.. -.-... . . . . ..,...., ‘-:‘:‘: :c : : : : :.:.::::n’;‘:.:.: ::::y:.: 1,. ‘. ...............“.i.. ,___ ,.,,(,.. ““...““‘..‘...“..““...“‘..‘.‘.‘... . . . . ..__.\.............._ ,.;..,.:, ,...,.,.,. . . . . ..____._ “..“‘.// ‘. .’ ” ” “. ““‘.’ ‘.“‘:‘.‘.‘“...-..- i’.‘.‘. L..“. .:.:.::::: ..,.,., ;,:.: __ _, ..,,_,, _. .,_ i:‘.:.:......r...:....:. . . ..__. . . 

. . . . . . . . . . . ..~.. i . .~~.~~~~~~~~.~~~~~~~~~~~~ effort in more than 75 percent of the projects in the test 
. . . . ..““.....~.~.~.~.~.~.........,,., ::::- ,,:,,, .., ,-,,(,‘, : : : i.. . . . . . . . . . . . .,.::.. . . . . . . . . . . . . . . . . . . . . . . . ._ : :,:_,,;.-,,:,:,:, 

------- sets, and with a MARE of less than 0.25. Even this 
o-10% 20.0 20.0 
ll-25% 33.3 53.3 

dataset did not fully meet the data requirements of 

2650% 20.0 73.3 
neural networks as suggested by Baum and Haussler 

30% 27.7 100.0 
[2], and Hinton [5]. 

Results for the use of CBR were not quite as good 

generated for each case in the above sample based on 
an average of the five nearest neighbour estimates. 
Each nearest neighbour estimate is based on an 
assumption that for projects of similar size the 
productivity rate will be similar eg. if for a source case 
of 1000 function point’s there is a recorded 
development time of 5000 hours then for a target case 
of 1500 function point’s it is assumed that the best 
estimate of development time will be 7500 hours. 
Averaging over a number of such estimates should 
reduce the impact of variations in productivity. 

Comparing this sample to that using adaptation 
rules showed that the use of rules improved the 
estimate in 12 of the 15 cases but reduced the accuracy 
in the other three. Overall the MARE for 15 
unadapted cases was 0.846 (as opposed to 0.48) or 0.63 
compared to 0.289 with the outlier case removed. 
Applying a simple t-test indicated that the 
improvement was significant at the 5% level (t=2.29, 
p=O. 18). 

The adaptation rules applied only to hardware 
platform used and language type. Given the relative 
crudity of the adaptation rules used in the CBR model 
at this stage, the results appear to indicate that this 
technique may with further refinement have 
considerable potential in software effort estimation. 
For this sample the data came from a variety of sources 
and contained a considerable amount of noise. The 
results would suggest that the use of more precise 
forms of adaptation and a wider range of the factors 
which influence productivity could lead to better 
estimates, particularly if the cases could be restricted to 
specific organisations (the equivalent of calibrating 
regression models for a specific environment). 

Conclusion 

ANNs were successful in accurately estimating 
project effort in a large dataset of simulated project 
data which is likely to have contained considerably less 
noise than typically occurs in project data. This dataset 
met the requirements of sufficient observations for 
adequate training. The intuitive expectation is that 
estimation errors will increase as the level of noise in 
the dataset is increased. 

In the ASMA dataset the back-propagation 

with 11 of 15 cases (73.3%) within 50% of the actual 
effort value and 8 of 15 (53.3%) within 25% of the 
actual. The results are however encouraging as only a 
few factors were considered for adaptation and the 
rules used were very limited in scope. 

Despite the restrictions of the project dataset, 
artificial neural networks have shown their ability to 
provide an adequate effort estimation model. Although 
CBR appears to have potential, further research will be 
needed to refine the quality of the estimation model. 
With the limited number of observations and project 
attributes which were recorded the full potential of the 
estimation capability of models could not be fully 
exploited and assessed. If the growth in projects in the 
ASMA dataset continues to increase at the current rate 
the database should within a few years provide a basis 
for the development of improved estimation models. If 
in addition relevant project attributes are recorded this 
should further enhance the models which may be 
developed. 

The conclusion thus is a conditional affirmation 
that artificial intelligence models are capable of 
providing adequate estimation models. Their 
performance is to a large degree dependent on the data 
on which they are trained, and the extent to which 
suitable project data is available will determine the 
extent to which adequate effort estimation models can 
be developed. 
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